Nav: Home

Sap-sucking bugs manipulate their host plants' metabolism for their own benefit

July 17, 2018

Researchers at the Max Planck Institute for Chemical Ecology, Germany, show for the first time that free-living, sap-sucking bugs can manipulate the metabolism of their host plants to create stable, nutritious feeding sites.

The discovery, published in eLife, shows that the bugs achieve this by copying plant hormones and injecting them into the leaves. They use a similar feeding strategy to endophytic insect species, which live inside plants. These findings could aid in the development of effective pest management strategies.

Free-living insects are able to move between and feed from different plants in the wild, unlike their less mobile endophytic counterparts, which spend a large part of their lives in a restricted area of the plant, often inside the tissues. When plants are targeted by bugs that depend on them for food and shelter, they often rely on defence responses that deter their attackers. However, some insects manipulate these mechanisms to counter the plants' defence and even create a better nutritional environment around feeding sites. Until now, it was believed that only endophytic insects employed this strategy.

"It is widely thought that endophytic insects modify their hosts' physiology using a plant hormone called cytokinin (CK)," explains lead author Christoph Bruetting, a postdoctoral researcher at the Max Planck Institute for Chemical Ecology. "These hormones can transform a plant organ that normally produces sugars - such as a mature leaf - into a kind of 'sink' where sugars are stored or consumed. This suggests manipulating CK could be an endophytic insect's way of creating local metabolic sinks in the tissues they infest. However, there was previously nothing to demonstrate that any insect can transfer CKs to a plant."

To investigate this further, Bruetting and his team looked at how the coyote tobacco plant (Nicotiana attenuata) responded to infestation with the free-living insect Tupiocoris notatus (T. notatus), one of its most common enemies in nature. The scientists developed an isotopic labelling technique which allowed them to see clearly that T. notatus flies inject CK into attacked leaves to manipulate the plant's metabolism.

During a small infestation, where only 20 insects were able to feed on a leaf at one time, the team found that the overall nutritional quality of the leaf was not altered, although the feeding damage was severe. When the plants experienced a more extreme infestation, the protein levels in the attacked leaves decreased, but their sugar and starch contents remained the same.

"This marginal influence on nutrient levels could be due to nutrients from unattacked tissues being allocated to the injured tissue," says senior author Ian Baldwin, Director of the Max Planck Institute for Chemical Ecology and Head of its Department of Molecular Ecology. "If this is correct, then T. notatus feeding likely causes the kind of sugar 'sinks' that only endophytic species were thought to create during feeding."

Baldwin adds that further studies on T. notatus and CK transfer will provide new insight on the complex interactions that occur during plant-herbivore interactions, which could help with developing new strategies to increase crop tolerance to insect attacks.
-end-
Reference

The paper 'Cytokinin transfer by a free-living mirid to Nicotiana attenuata recapitulates a strategy of endophytic insects' can be freely accessed online at https://doi.org/10.7554/eLife.36268. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

Media contact

Emily Packer, Senior Press Officer
eLife
e.packer@elifesciences.org
01223 855373

About eLife

eLife aims to help scientists accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours in science. We publish important research in all areas of the life and biomedical sciences, which is selected and evaluated by working scientists and made freely available online without delay. eLife also invests in innovation through open source tool development to accelerate research communication and discovery. Our work is guided by the communities we serve. eLife is supported by the Howard Hughes Medical Institute, the Max Planck Society, the Wellcome Trust and the Knut and Alice Wallenberg Foundation. Learn more at https://elifesciences.org/about.

eLife

Related Metabolism Articles:

Inhibition of sphingolipid metabolism and neurodegenerative diseases
Disrupting the production of a class of lipids known as sphingolipids in neurons improved symptoms of neurodegeneration and increased survival in a mouse model.
Viruses don't have a metabolism; but some have the building blocks for one
'Giant viruses' are many times larger than typical viruses and have more complex genomes.
New metabolism discovered in bacteria
Microbiologists at Goethe University Frankfurt have discovered how the bacterium Acetobacterium woodii uses hydrogen in a kind of cycle to conserve energy.
Protein controls fat metabolism
A protein in the cell envelope influences the rate of fatty acid uptake in cells.
A new model of metabolism draws from thermodynamics and 'omics'
Scientists at EPFL have developed an algorithm that can model biochemical reactions from metabolism down to RNA synthesis with unprecedented accuracy.
A new way to control microbial metabolism
To help optimize microbes' ability to produce useful compounds but also maintain their own growth, MIT chemical engineers have devised a way to induce bacteria to switch between different metabolic pathways at different times.
Parasite manipulates algal metabolism for its own benefit
Researchers from the Max Planck Institute for Chemical Ecology and the universities of Jena and Frankfurt show that a pathogenic fungus alters the metabolism of its host unicellular algae, for its own purposes: the small bioactive substances that are formed in the process benefit the fungi's own propagation while preventing the algae from proliferating.
Lack of sleep affects fat metabolism
A restricted-sleep schedule built to resemble an American work week made study participants feel less full after a fatty meal and altered their lipid metabolism.
Mastering metabolism for shark and ray survival
Understanding the internal energy flow -- including the metabolism -- of large ocean creatures like sharks and rays could be key to their survival in a changing climate, according to a new study.
Rutgers researchers identify the origins of metabolism
A Rutgers-led study sheds light on one of the most enduring mysteries of science: How did metabolism -- the process by which life powers itself by converting energy from food into movement and growth -- begin?
More Metabolism News and Metabolism Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.