The physiology of survival

July 17, 2019

Bacteria do not simply perish in hunger phases fortuitously; rather, the surrounding cells have a say as well. A research team from the Technical University of Munich (TUM) has now discovered that two factors, above all, decide over life and death: the energy required to continue living and the efficiency with which surviving cells can recycle biomass from dead cells.

The survival and growth of cells are central factors in biological systems. Scientists such as Ulrich Gerland, Professor for Physics of Complex Biosystems at the TUM, are therefore trying to understand how the molecular components interact to maintain the viability of a group of cells in stress situations.

The team led by Ulrich Gerland has now succeeded in identifying two crucial factors for the survival of a bacterium: the basic energy consumption of a cell and the quantity of energy that the surviving cells can gain per neighboring dead cell, measuring the biomass recycling efficiency.

Nutrients from neighboring cell cadavers

The researchers emulated an emergency situation in cells of the bacterium Escherichia Coli in which the bacteria were lacking sugar and other carbohydrates. The bacteria therefore had neither energy nor building materials available.

As the first cells died, the surviving cells tried to gain nutrients from the surrounding cell cadavers. The higher the energy turnover of a certain enzyme, the greater was the rate of mortality. The more they were able to recycle from dead cells, the higher was the rate of survival.

"Our findings make it possible to quantitatively determine the contributions of individual molecular components to the survival of bacterial cells, for the first time," says Gerland.

Decay of viability as a collective phenomenon

Overall, there was an exponential decrease of surviving cells with time. In principle, such a development can be explained with the random perishing of individual cells, just like in radioactive decay which also has an exponential kinetics.

But the interrelationships are more complex, as the researchers found out when they changed experimental conditions. Decay in bacterial colonies is a collective phenomenon. The surrounding bacterial cells therefore co-determine whether a cell in their midst perishes or survives.

Mathematical analysis of survival

Changes to the mortality rate can arise from a wealth of genetic or ecological perturbations which influence the survival of bacteria. The balance which emerges is therefore different for each bacterium and each environmental condition.

In order to understand the dynamics, the researchers modelled the overall system of surviving bacteria mathematically. Then, they used this relationship to determine molecular contributions to the survival of cells.

Depending on the cell type, important molecular factors for the survival of cells can be identified, and this facilitates the discovery of enzymes or other proteins that determine the rate of survival.

"Our aim is to understand, systematically and quantitatively, how bacteria manage to survive in so many environmental conditions," says Gerland. "It is the search for the physiology of survival."
-end-
The research was supported by the Deutsche Forschungsgemeinschaft (DFG) within the cluster of excellence Nanosystems Initiative Munich (NIM) and the priority program SPP1617, as well as by the fellowship program of the postgraduate school for Quantitative Biological Sciences Munich (QBM).

Publication:

Death rate of E. coli during starvation is set by maintenance cost and biomass recycling
Severin J. Schink, Elena Biselli, Constantin Ammar, Ulrich Gerland
Cell Systems, July 17, 2019 - DOI: 10.1016/j.cels.2019.06.003

Technical University of Munich (TUM)

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.