Nav: Home

Study pinpoints cell types affected in brains of multiple sclerosis patients

July 17, 2019

Scientists have discovered that a specific brain cell known as a 'projection neuron' has a central role to play in the brain changes seen in multiple sclerosis (MS). The research, published today in Nature, shows that projection neurons are damaged by the body's own immune cells, and that this damage could underpin the brain shrinkage and cognitive changes associated with MS. These new findings provide a platform for specific new MS therapies that target damaged brain cells to be developed.

Multiple sclerosis is a diease of the brain and the spinal cord that affects over two million people worldwide. The potential symptoms of MS are wide ranging and can include problems with vision, movement and cognitive abilities. Previous research has shown that a brain region called the cortex shrinks over time in MS patients, known as cortical atrophy. The processes driving this cortical shrinkage have, until now, been unclear.

In a new international study from the University of Cambridge, University of Heidelberg and University of California, San Francisco, researchers used post-mortem human brain samples from MS patients to study a wide range of cell types implicated in the disease, and compared their findings to brain samples donated from people that did not have MS.

"Using a new technique called single nuclei RNA sequencing, we were able to study the genetic make-up of individual brain cells to understand why some cells might be more susceptible to damage in MS than others," said Dr Lucas Schirmer, lead scientist on the project from the University of Heidelberg.

"Our results showed that a particular type of nerve cell called "projection neurons" were particularly vulnerable to damage in the brains of MS patients."

In healthy people, these projection neurons are involved in communicating information between different areas of the brain. It is therefore possible that the damage to these cells can affect cognitive abilities in MS patients. Moreover, the loss of this particular cell types helps explain why brains of MS patients shrink over time - the more cells that are damaged and lost, the less space the brain takes up.

The researchers also showed that immune cells in the brains of MS patients were targeting projection neurons and causing cell stress and damage.

"We found that antibody-producing immune cells are related to the damage of the important projection neurons in MS brains," said Professor David Rowitch from the University of Cambridge, the senior scientist coordinating the research. "This suggests that cell therapies targeting these immune cells could protect projection neurons and provide a novel treatment for progressive MS."

Dr Dmitry Velmeshev and Professor Arnold Kriegstein from the University of California, San Francisco worked together to develop the techniques used to analyse the genetic code within the individual brain cells.

"These new techniques have wide applicability in the understanding of human neurodevelopmental and neurological disorders and are providing new insight into not only MS, but also autism spectrum disorder," said Professor Arnold Kriegstein.

Dr Andrew Welchman, Head of Neuroscience at Wellcome, said: "This study uses state-of-the-art measurements of gene expression to provide a valuable new window onto the process by which inflammation in the brain causes MS to progress. This new insight should stimulate further development of treatments that could freeze the disease in its tracks. It is an exciting advance that attests to the importance of cutting-edge genetic tools in understanding diseases of the brain."

Dr Bruce Bebo, Executive Vice President for Research at the National MS Society (USA) said: "Research, such as Professor Rowitch's on projection neurons in MS brain tissue, contributes to our understanding of the underlying pathology in MS and is likely to lead to better, more targeted ways to stop the disease, protect the nervous system from further injury, and slow down progression."
-end-
The research was supported by the National Multiple Sclerosis Society, the Adelson Medical Research Foundation, the National Institutes of Health, the Paul D Allen Frontiers Group, the German Research Foundation, the Hertie Foundation , the National Institute for Health Research Cambridge Biomedical Research Centre, the European Research Council and Wellcome.

University of Cambridge

Related Multiple Sclerosis Articles:

New biomarkers of multiple sclerosis pathogenesis
Multiple sclerosis (MS) is a chronic debilitating inflammatory disease targeting the brain.
Using telemedicine to treat multiple sclerosis
Multiple sclerosis (MS) clinicians face continued challenges in optimizing neurological care, especially for people with advanced MS living in medically underserved communities.
Improving symptom tracking in multiple sclerosis
With a recent two-year, $833,000 grant from the US Department of Defense, kinesiology professor Richard van Emmerik and colleagues at the University of Massachusetts Amherst hope to eventually help an estimated 1 million people worldwide living with progressive multiple sclerosis by creating an improved diagnostic test for this form of the disease, which is characterized by a steady decrease in nervous system function.
An antibody-based drug for multiple sclerosis
Inserm Unit U919, directed by Professor Denis Vivien has developed an antibody with potential therapeutic effects against multiple sclerosis.
Four new risk genes associated with multiple sclerosis discovered
Scientists of the Technical University of Munich and the Max Planck Institute of Psychiatry have identified four new risk genes that are altered in German patients with multiple sclerosis.
PET detects neuroinflammation in multiple sclerosis
The triggers of autoimmune inflammation in multiple sclerosis (MS) have eluded scientists for many years, but molecular imaging is bringing researchers closer to identifying them, while providing a means of evaluating next-generation therapies for MS, say researchers introducing a study at the 2016 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging.
Scientists find genetic cause of multiple sclerosis
Researchers have discovered a rare genetic mutation that makes it probable that a person will develop multiple sclerosis (MS).
ANKRD55: A new gene involved in Multiple Sclerosis is discovered
The Ikerbasque researcher Koen Vandenbroeck, who heads the Neurogenomiks laboratory which reports to the Achucarro centre and the UPV/EHU-University of the Basque Country, together with other national and international groups, has shown that a genetic variant in the 5q11 chromosome, which is associated with susceptibility to developing multiple sclerosis, greatly regulates a gene known as ANKRD55.
Children with and without multiple sclerosis have differences in gut bacteria
In a recent study, children with multiple sclerosis had differences in the abundance of specific gut bacteria than children without the disease.
Rituximab is superior to fingolimod for certain patients with multiple sclerosis
A new study indicates that rituximab is more effective than fingolimod for preventing relapses in patients with highly active multiple sclerosis switching from treatment with natalizumab.

Related Multiple Sclerosis Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...