Predicting the biodiversity of rivers

July 17, 2020

Biodiversity is severely threatened both in Switzerland and worldwide, and numerous organisms are facing massive declines - particularly in freshwater ecosystems. All the species living in rivers - including fish, bacteria and many different aquatic invertebrates, such as mayflies, stoneflies and caddisflies - are crucial for the functioning of these ecosystems. But many species are under threat due to habitat homogenization, pollution by pesticides and nutrients, and the spread of non-native species. In order to understand and protect riverine ecosystems, assessing their biodiversity is essential.

Combining environmental DNA and hydrological models

In a new study, the research group of Florian Altermatt, professor at the Department of Evolutionary Biology and Environmental Studies of the University of Zurich (UZH) and the Swiss Federal Institute of Aquatic Science and Technology (Eawag), developed a novel approach to predict biodiversity patterns in river ecosystems. "For the first time, we combined the use of environmental DNA with hydrological models in order to make predictions on the state of biodiversity at a very fine resolution across catchments of hundreds of square kilometers," says Altermatt.

Biodiversity predictions with high accuracy

All organisms constantly shed their DNA into the environment. By collecting water samples and extracting and sequencing the so-called environmental DNA (eDNA), the biodiversity can be determined faster, less invasively and more comprehensively than by identifying the organisms themselves. Since the DNA in rivers can be transported downstream by stream flow for many kilometers, information on the occurrence of organisms in the upstream catchment is also received. Using mathematical models based on hydrological principles, the scientists were able to reconstruct biodiversity patterns for the whole 740 square kilometer basin of the Thur in north-eastern Switzerland with a resolution of stream sections of one kilometer. "Our model matches the direct observation of aquatic insects' local occurrence with an unprecedented accuracy of 57 to 100%," says Luca Carraro, first author of the study.

Identifying unseen biodiversity hotspots

The Thur catchment is representative of many land-use types, including forest, agriculture and settlements. It thus serves as a generalizable example for many riverine ecosystems. Furthermore, the new method can be used for large-scale and high-resolution assessments of biodiversity state and change even with minimal prior knowledge of the riverine ecosystem. "Specifically, the approach enables biodiversity hotspots to be identified that might be otherwise overlooked, thus enabling focused conservation strategies to be implemented," adds Altermatt.

Rapid application of research findings in Switzerland

Many countries are currently establishing aquatic biomonitoring using eDNA, and could profit from the novel method. According to Florian Altermatt, Switzerland has a leading role in this field: "The transfer from scientific findings to application is very rapid. We are now finalizing guidelines for the Federal Office for the Environment on how to use eDNA in standard biodiversity monitoring." This will make it easier to describe and monitor biodiversity for the whole network of Swiss rivers and streams, which is about 65,000 kilometers in total.

University of Zurich

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to