Chemical thermometers take temperature to the nanometric scale

July 17, 2020

The miniaturisation of electronic components coupled with their increasing integration density has considerably expanded heat flows, which can lead to overheating. But how to measure these nanometric events when conventional solutions such as infrared thermography cannot go below a micrometre (1,000 times bigger than a nanometre)?

A research team bringing together scientists from two CNRS laboratories, the Coordination Chemistry Laboratory and the Laboratory for Analysis and Architecture of Systems, has proposed doing so by using the bistability properties of a family of chemical compounds known as spin-crossover (SCO) molecules. They exist into two electronic states with different physical properties, and can switch from one to the other when they absorb or lose energy. For instance, some of them change colour depending on the temperature.

Once deposited in the form of a film on an electronic component, the optical properties of SCO molecules change depending on the temperature, enabling this chemical thermometer to establish a nanometric-scale thermal map of the surface of microelectronic circuits. However, the primary feat of these SCO molecular films is actually their unique stability: the properties of the molecules remain unchanged, even after more than 10 million thermal cycles under ambient air and high temperatures (up to 230°C).

This innovation* overcomes the primary hurdle for SCO molecules, namely their fatigability, or the fact that their properties are often altered after multiple transitions from one electronic state to another. It could soon be used in the microelectronics industry to probe local thermal processes, and to thereby improve the design of future devices.
-end-
Note

*- It was granted patent protection on 1 October 2019 (patent no. FR1910886)

CNRS

Related Molecules Articles from Brightsurf:

Finally, a way to see molecules 'wobble'
Researchers at the University of Rochester and the Fresnel Institute in France have found a way to visualize those molecules in even greater detail, showing their position and orientation in 3D, and even how they wobble and oscillate.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.

Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.

Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.

The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.

Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.

Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.

Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.

Read More: Molecules News and Molecules Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.