Nav: Home

COVID-19: Viral shutdown of protein synthesis

July 17, 2020

Researchers from Munich and Ulm have determined how the pandemic coronavirus SARS-CoV-2 inhibits the synthesis of proteins in infected cells and shown that it effectively disarms the body's innate immune system. 

Although its name is relatively unspecific and indeed opaque, the Nonstructural Protein 1 (Nsp1) encoded by the coronavirus SARS-Cov-2, which is responsible for the current pandemic, has now been shown to have a devastating effect on host cells. Nsp1 is in fact one of the central weapons used by the virus to ensure its own replication and propagation in human hosts. Nsp1 was identified as a virulence factor following the outbreak of the related SARS coronavirus nearly 20 years ago, when it was shown to inhibit protein synthesis in infected cells. Now researchers based at Ludwig-Maximilians-Universitaet (LMU) in Munich and Ulm University Hospital have discovered what makes Nsp1 so potent. In a paper which appears in the journal Science, they describe the protein's mode of action in detail.

In all biological cells, the task of synthesizing proteins is performed by complex molecular machines known as ribosomes. Ribosomes interact with messenger RNAs (mRNAs), which serve as blueprints for protein synthesis, and translate the nucleotide sequence of each mRNA into the amino-acid sequence of the corresponding protein. The amino-acid sequence in turn determines the shape and biological function of each individual protein. Ribosomes consist of two distinct subunits, and Nsp1 binds to the smaller one - the 40S subunit. The mRNA initially binds to the small subunit, prior to the latter's interaction with the 60S subunit to form the cavity through which the mRNA is then threaded. The new study shows that one end of the Nsp1 protein interacts with the 40S subunit in such a way that it prevents binding of the mRNA. With the aid of high-resolution cryo-electron microscopy, Professor Roland Beckmann and his colleagues at the LMU Gene Center have shown in three-dimensional detail how Nsp1 binds tightly to a specific pocket in the small ribosomal subunit and inhibits the formation of functional ribosomes. Further experiments revealed that Nsp1 can also interact with specific configurational states of the fully assembled ribosome.

In addition, the team led by Konstantin Sparrer at Ulm University Hospital was able to show that the shutdown of protein synthesis leads to an almost complete collapse of one of the body's major lines of defense against the virus. Nsp1 inactivates the innate immune response by inhibiting a vital signaling cascade. The authors of the study hope that the insights gained will make it possible to find ways to neutralize the novel coronavirus, and thus mitigate the severity of the respiratory disease that it causes. One potential approach, they say, would be to develop a molecule that masks the viral protein's binding site. This should be feasible, since the Nsp1-binding pocket itself appears not to have an essential role in ribosomal function.
-end-


Ludwig-Maximilians-Universität München

Related Proteins Articles:

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.
Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.
New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.
Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.
Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.
Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
More Proteins News and Proteins Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.