UQ researchers tackle emotions head on - at the cellular level

July 18, 2005

University of Queensland researchers have identified a protein that is crucially involved in how our memories are stored and processed, paving the way for new strategies to treat conditions certain mental disorders.

Dr Louise Faber and Professor Pankaj Sah, from UQ's Queensland Brain Institute (QBI), have been studying how cells in the brain form memories.

"What we were looking at in particular is how the memory of emotions, such as fear and anxiety, are laid down," Dr Faber said.

Professor Sah said the way strong emotions can effect our memories can be described by picturing a scene of someone sitting on a train listening to a piece of music.

"If that person is then subjected to a horrible tragedy such as a train crash, then the next time they hear that song it can bring back, in very vivid detail, that event and all the negative emotions associated with the crash," Professor Sah said.

Dr Faber said the part of the brain they were looking at was the amygdala, which mediates emotion and is believed to be the source of some mental disorders when the way information is processed malfunctions.

"In particular, fearful memories that underlie disorders such as post-traumatic stress disorder and anxiety are thought to be mediated by long term changes in the strength of connections between cells in the amygdala," Dr Faber said.

"We found a particular protein is crucially involved in regulating information processing and storage in the amygdala.

"When we blocked this protein with a specific blocker, the strength of connections between cells was greatly enhanced."

Dr Faber said the implications of this work could lead to developing novel strategies to treat mental disorders mediated by the amygdala, such as panic attacks, post traumatic stress disorder anxiety and depression.

The researchers' work was recently published in the highly prestigious scientific journal Nature Neuroscience.

The QBI is home to leading researchers in neural stem cell research and are currently conducting research into finding ways to stimulate the production of new functional nerve cells to overcome diseases such as dementia (particularly Alzheimer's disease), stroke, motor neuron disease, head and spinal cord injury, addiction and mental health.
-end-
Media inquiries: Dr Louise Faber (61-733-468-835), Professor Pankaj Sah (61-733-468-815) or Andrew Dunne at UQ Communications (61-733-652-802).

Research Australia

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.