Nav: Home

Brain region central to placebo effect identified

July 18, 2007

Researchers have pinpointed a brain region central to the machinery of the placebo effect--the often controversial phenomenon in which a person's belief in the efficacy of a treatment such as a painkilling drug influences its effect.

The researchers said their findings with human subjects offer the potential of measuring the placebo effect and even modulating it for therapeutic purposes. They also said their findings could enable measurements of brain function that "would help determine dysfunctions in cerebral mechanisms that may impair recovery across a number of conditions."

Jon-Kar Zubieta and colleagues published their findings in the July 19, 2007, issue of the journal Neuron, published by Cell Press.

Their studies concentrated on a brain area known as the nucleus accumbens (NAC), a region deep in the brain, known to play a role in expectation of reward. Earlier studies had hinted at involvement of the NAC in the placebo effect, but the nature of that role was unknown, said the researchers.

In their experiments, the researchers told volunteers that they were testing the effects of a new pain-killing drug and that the subjects might receive the drug or a placebo. However, in the experiments, the researchers gave only a placebo injection of a salt solution. The experiments involved asking the subjects to rate their expectation of the pain-killing effects of the "drug" and also the level of pain relief with or without the "drug" that they felt from a moderately painful injection of salt solution into their jaw muscle.

In one set of experiments, the researchers used a molecular tracer scanning technique known as Positron Emission Spectroscopy to measure release from the NAC of the neurotransmitter dopamine--a chemical trigger of the brain's reward response. They found that the greater subjects' anticipation of the pain-killing benefit of the placebo, the greater the dopamine release from the NAC. Also, subjects who reported greater relief from the placebo when they did experience pain showed greater NAC activity when they received the placebo before the pain.

In separate experiments, the researchers studied whether activation of subjects' NAC during reward processing correlated with the magnitude of their placebo effect. They told subjects to expect monetary rewards of different amounts, as their brains were scanned using functional magnetic resonance imaging. The researchers found that the people who showed greater activation of the NAC during this reward-expectation task also showed a greater anticipation of effectiveness of a placebo.

The researchers concluded that "These findings are consistent with the hypothesis that this system is involved in the encoding of the 'incentive value' of the placebo, possibly acting as a gate or permissive system for the formation of placebo effects."

They wrote that "The placebo effect then emerges as a resiliency mechanism with broad implications that, given its activation of specific circuits and mechanisms, can be both examined and modulated for therapeutic purposes."
-end-
The researchers include David J. Scott, Christine M. Egnatuk, Heng Wang, Robert A., Koeppe, and Jon-Kar Zubieta of The University of Michigan, Ann Arbor; Christian S. Stohler of University of Maryland, Baltimore. This work was supported by grants R01 AT 001415 and R01 DA 016423 to J.K.Z. and R01 DE 15396 to C.S.S.

Scott et al.: "Individual Differences in Reward Responding Explain Placebo-Induced Expectations and Effects." Publishing in Neuron 55, 325-336, July 19, 2007. DOI 10.1016/j.neuron.2007.06.028. www.neuron.org.

Cell Press

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.