Unearthing King Tet: Key protein influences stem cell fate

July 18, 2010

CHAPEL HILL, N.C. - Take a skin cell from a patient with Type 1 diabetes. Strip out everything that made it a skin cell, then reprogram it to grow into a colony of pancreatic beta cells. Implant these into your patient and voilà! She's producing her own insulin like a pro.

This type of personalized therapy is the ultimate goal of most stem cell research. But to reliably achieve that goal for treating diabetes and other diseases, there's a whole network of genes, proteins and miniscule chemical reactions to decipher first.

Findings published today in the journal Nature put us a step closer to untangling that web. UNC biochemist Yi Zhang, PhD and his team have discovered that a protein called Tet 1 helps stem cells renew themselves and stay pluripotent--able to become any type of cell in the body.

"This may be one component of a cocktail to reprogram a specialized cell to "go back" to the undifferentiated, embryonic stem cell state," said Zhang, Kenan distinguished professor of biochemistry and biophysics and an investigator of the Howard Hughes Medical Institute. "Then you can differentiate it into whatever cell type you want." He is also a member of the UNC Lineberger Comprehensive Cancer Center.

Both humans and mice have Tet proteins. Observing how Tet proteins operate in colonies of mouse embryonic stem cells, Zhang's team found that the proteins activate a gene called Nanog, which helps stem cells reproduce themselves and keep their pluripotency.

"There are many genes that are important for maintaining embryonic stem cells' status," said Zhang. "We will not understand the whole thing until we identify all the important parts of the network. From that standpoint, we have uncovered another factor in the network."

In addition to observing cell colonies, the team examined the effects of Tet1 protein in "real life" by seeing how a mouse embryo would develop if the Tet1 protein was depleted. They found that when Tet1 is depleted in one cell of the two-cell embryo, cells derived from the Tet1 depleted cells are prone to become trophoblast cells, instead of inner cell mass, from which the pluripotent stem cells are derived.

The Tet1 protein appears to act as an enzyme to maintain the Nanog gene at an active state. When the gene is turned on, the cell maintains its identity as a stem cell. When it's turned off, the cell starts to lose its "stemness". Tet1 performs its function by regulating a modification on DNA, one kind of epigenetic modification. Effects like this are known as epigenetic changes, and they're the reason that various types of cells in the body perform different functions even though they're all powered by the same genetic code. It's all about which genes are activated--and when.

"The more we understand the machinery that modifies DNA, we'll understand more about cell fate determination," said Zhang. Ultimately, with enough information about Tet proteins and other factors, "we will be able to use that knowledge to reprogram cells--to change their function," he said.
-end-
The paper's co-authors include UNC postdoctoral researchers Shinsuke Ito, Ana D'Alessio, Olena Taranova and Kwonho Hong. Lawrence Sowers is the Associate Dean of medicine at the Loma Linda University School of Medicine. The study was supported by funding from the National Institutes of Health and the Howard Hughes Medical Institute.

University of North Carolina Health Care

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.