Nav: Home

Synthetic membranes created to mimic properties of living cells

July 18, 2016

Biochemists at the University of California San Diego have developed artificial cell membranes that grow and remodel themselves in a manner similar to that of living mammalian cells.

The achievement, detailed in a paper published in this week's issue of the Proceedings of the National Academy of Sciences, follows the successful design last year in the same laboratory of artificial, or synthetic, cell membranes capable of sustaining continual growth. The two developments now bring the researchers closer to mimicking all of the properties of living mammalian cell membranes with synthetic components.

That's important because synthetic membranes that accurately mimic the behavior of living mammalian cell membranes could be used by biomedical researchers to develop more effective drugs that target membrane proteins and better understand the chemical changes that occur in dysfunctional membranes during disease.

"While artificial membranes have been used to model the properties of native membranes, previous methods have not been able to mimic lipid membrane remodeling," said Neal Devaraj, an associate professor of chemistry and biochemistry at UC San Diego who headed the research team for both studies. "In our latest study, we show that reversible chemical reactions can be harnessed to achieve spontaneous remodeling of lipids in synthetic membranes."

Living cells continually remodel their membranes to change their physical characteristics, a process that can affect the behavior of other biomolecules in the cell membrane.

"Cells use lipid remodeling to respond to their environment and maintain membrane homeostasis or to carry out specific functions such as division and signaling," said Andrew Rudd, a co-author of the study and graduate student in the Devaraj lab. "Using phospholipid remodeling allows cells to generate new phospholipid species by recycling existing phospholipids instead of making them from scratch. This saves the cell time and energy."

Devaraj explained that his team's latest development provides a way for biochemists to better understand the changes that occur in phospholipid membranes during lipid remodeling.

"One exciting application would be to probe the behavior of bound and integral membrane proteins in response to shifts in membrane composition," explained Roberto Brea, a postdoctoral fellow in the Devaraj lab and the lead author of the study. "Integral membrane proteins are extremely important and common drug targets and we need a way to understand their behavior in lipid bilayers. This is one way to do that."
-end-
Support for the research project was provided by the National Science Foundation and the Human Frontier Science Program.

University of California - San Diego

Related Behavior Articles:

Is Instagram behavior motivated by a desire to belong?
Does a desire to belong and perceived social support drive a person's frequency of Instagram use?
A 3D view of climatic behavior at the third pole
Research across several areas of the 'Third Pole' -- the high-mountain region centered on the Tibetan Plateau -- shows a seasonal cycle in how near-surface temperature changes with elevation.
Witnessing uncivil behavior
When people witness poor customer service, a manager's intervention can help reduce hostility toward the company or brand, according to WSU research.
Whole-brain imaging of mice during behavior
In a study published in Neuron, Emilie Macé from Botond Roska's group and collaborators demonstrate how functional ultrasound imaging can yield high-resolution, brain-wide activity maps of mice for specific behaviors.
Swarmlike collective behavior in bicycling
Nature is full of examples of large-scale collective behavior; humans also exhibit this behavior, most notably in pelotons, the mass of riders in bicycle races.
My counterpart determines my behavior
Whether individuals grow up in a working-class environment or in an academic household, they take on behaviors that are typical for their class -- so goes the hypothesis.
A gene required for addictive behavior
Cocaine can have a devastating effect on people. It directly stimulates the brain's reward center, and, more importantly, induces long-term changes to the reward circuitry that are responsible for addictive behaviors.
Supercomputing the emergence of material behavior
Chemists at the University of California, San Diego designed the first artificial protein assembly (C98RhuA) whose conformational dynamics can be chemically and mechanically toggled.
The neural circuitry of parental behavior
HHMI scientists have deconstructed the brain circuits that control parenting behavior in mice, and identified discrete sets of cells that control actions, motivations, and hormonal changes involved in nurturing young animals.
Parenting behavior in adoptive families
A new longitudinal study of adoptive families looked at whether symptoms of depression in adoptive fathers is also related to over-reactive parenting and behavior problems in children; the study also examined how social support networks affect parenting.
More Behavior News and Behavior Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.