Nav: Home

Quick soil test aims to determine nitrogen need

July 18, 2018

Healthy soil contributes to healthy crops. Farmers know this, so they do what they can to ensure their soil is in good shape. They send samples of their soil for lab testing to find out if it is low in any important nutrients. If it is, they can take steps to improve the health of their soil. These might include adding fertilizers or growing cover crops that feed the soil.

One of the essential nutrients for vigorous crop production is nitrogen. Yet most routine tests done in commercial soil testing labs do not measure available nitrogen in the soil. Tests for nitrogen exist, but for a variety of reasons they cannot be done quickly and cost-effectively. As a result, farmers may be left guessing about the health of their soil. They may apply more or less nitrogen fertilizer than is actually needed.

There are a couple of reasons this is not a good practice. One is the cost. Nitrogen fertilizer is one of the more expensive soil inputs, so farmers may be spending money they do not need to spend. Another reason is the environment. When more nitrogen is added than plants can use, it can run off the land and cause problems for bodies of water downstream.

The lack of a rapid, cost-effective test for soil nitrogen is clearly a problem. Soil scientists at The Ohio State University and Cornell University think they have found a solution. They have shown that a test originally developed for extracting a particular protein in soil is actually a good test for a variety of proteins. Proteins are by far the largest pool of available organic nitrogen in soil. A good, quick test for protein in the soil could also be used as a test for available nitrogen.

The process measures a protein known as glomalin. Glomalin is generally believed to be produced by a common soil microorganism that has a beneficial relationship with plant roots. The tongue-twisting name for this organism is arbuscular mycorrhizal fungi.

An earlier study suggested that the glomalin extraction method might actually extract proteins from other sources. Steve Culman and his research colleagues decided to test that idea. They added a variety of sources of protein to soil samples. They used leaves from corn, bean, and common weeds (plant sources), chicken and beef (animal sources), and white button mushroom and oyster mushroom (fungi).

They applied the so-called glomalin protocol to these soil samples and found that proteins from all of the sources were extracted via this method. The procedure was not, in fact, limited to extracting proteins produced by mycorrhizal fungi.

The researchers, therefore, recommend adoption of new terms such as soil protein, rather than glomalin, to more accurately describe the proteins extracted through this method.

This soil protein extraction procedure is a cost-effective, rapid method that could readily be adopted by commercial soil testing labs. It is possible, however, that some specific protein types may not be recovered by this method. More research on that point would be useful.

"We don't have many rapid ways to determine how much nitrogen a soil can provide and store over a growing season," said Culman. "This test is one way that might help us quickly measure an important pool of soil nitrogen. More work is needed to understand soil protein, but we think it has the potential to be used with other rapid measurements to assess the soil health of a farmer's field."
-end-
Read more about this research in Agricultural and Environmental Letters.

American Society of Agronomy

Related Nitrogen Articles:

'Black nitrogen'
In the periodic table of elements there is one golden rule for carbon, oxygen, and other light elements.
A deep dive into better understanding nitrogen impacts
This special issue presents a selection of 13 papers that advance our understanding of cascading consequences of reactive nitrogen species along their emission, transport, deposition, and the impacts in the atmosphere.
How does an increase in nitrogen application affect grasslands?
The 'PaNDiv' experiment, established by researchers of the University of Bern on a 3000 m2 field site, is the largest biodiversity-ecosystem functioning experiment in Switzerland and aims to better understand how increases in nitrogen affect grasslands.
Reducing reliance on nitrogen fertilizers with biological nitrogen fixation
Crop yields have increased substantially over the past decades, occurring alongside the increasing use of nitrogen fertilizer.
Flushing nitrogen from seawater-based toilets
With about half the world's population living close to the coast, using seawater to flush toilets could be possible with a salt-tolerant bacterium.
We must wake up to devastating impact of nitrogen, say scientists
More than 150 top international scientists are calling on the world to take urgent action on nitrogen pollution, to tackle the widespread harm it is causing to humans, wildlife and the planet.
How nitrogen-fixing bacteria sense iron
New research reveals how nitrogen-fixing bacteria sense iron - an essential but deadly micronutrient.
Corals take control of nitrogen recycling
Corals use sugar from their symbiotic algal partners to control them by recycling nitrogen from their own ammonium waste.
Foraging for nitrogen
As sessile organisms, plants rely on their ability to adapt the development and growth of their roots in response to changing nutrient conditions.
Inert nitrogen forced to react with itself
Direct coupling of two molecules of nitrogen: chemists from Würzburg and Frankfurt have achieved what was thought to be impossible.
More Nitrogen News and Nitrogen Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Graham
If former Minneapolis police officer Derek Chauvin's case for the death of George Floyd goes to trial, there will be this one, controversial legal principle looming over the proceedings: The reasonable officer. In this episode, we explore the origin of the reasonable officer standard, with the case that sent two Charlotte lawyers on a quest for true objectivity, and changed the face of policing in the US. This episode was produced by Matt Kielty with help from Kelly Prime and Annie McEwen. Support Radiolab today at Radiolab.org/donate.