Nav: Home

Splitting water: Nanoscale imaging yields key insights

July 18, 2018

In the quest to realize artificial photosynthesis to convert sunlight, water, and carbon dioxide into fuel - just as plants do - researchers need to not only identify materials to efficiently perform photoelectrochemical water splitting, but also to understand why a certain material may or may not work. Now scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) have pioneered a technique that uses nanoscale imaging to understand how local, nanoscale properties can affect a material's macroscopic performance.

Their study, "Nanoscale Imaging of Charge Carrier Transport in Water Splitting Anodes", has just been published in Nature Communications. The lead researchers were Johanna Eichhorn and Francesca Toma of Berkeley Lab's Chemical Sciences Division.

"This technique correlates the material's morphology to its functionality, and gives insights on the charge transport mechanism, or how the charges move inside the material, at the nanoscale," said Toma, who is also a researcher in the Joint Center for Artificial Photosynthesis, a Department of Energy Innovation Hub.

Artificial photosynthesis seeks to produce energy-dense fuel using only sunlight, water, and carbon dioxide as inputs. The advantage of such an approach is that it does not compete against food stocks and would produce no or low greenhouse gas emissions. A photoelectrochemical water splitting system requires specialized semiconductors that use sunlight to split water molecules into hydrogen and oxygen.

Bismuth vanadate has been identified as a promising material for a photoanode, which provides charges to oxidize water in a photoelectrochemical cell. "This material is a case example in which efficiency should be theoretically good, but in experimental tests you actually observe very poor efficiency," Eichhorn said. "The reasons for that are not completely understood."

The researchers used photoconductive atomic force microscopy to map the current at every point of the sample with high spatial resolution. This technique has already been used to analyze local charge transport and optoelectronic properties of solar cell materials but is not known to have been used to understand the charge carrier transport limitations at the nanoscale in photoelectrochemical materials.

Eichhorn and Toma worked with scientists at the Molecular Foundry, a nanoscale science research facility at Berkeley Lab, on these measurements through the Foundry's user program. They found that there were differences in performance related to the nanoscale morphology of the material.

"We discovered that the way charges are utilized is not homogeneous over the whole sample, but rather, there's heterogeneity," Eichhorn said. "Those differences in performance may account for its macroscopic performance - the overall output of the sample - when we perform water splitting."

To understand this characterization, Toma gives the example of a solar panel. "Let's say the panel has 22 percent efficiency," she said. "But can you tell at the nanoscale, at each point in the panel, that it will give you 22 percent efficiency? This technique enables you to say, yes or no, specifically for photoelectrochemical materials. If the answer is no, it means there are less active spots on your material. In the best case it just decreases your total efficiency, but if there are more complex processes, your efficiency can be decreased by a lot."

The improved understanding of how the bismuth vanadate is working will also allow researchers to synthesize new materials that may be able to drive the same reaction more efficiently. This study builds on previous research by Toma and others, in which she was able to analyze and predict the mechanism that defines (photo)chemical stability of a photoelectrochemical material.

Toma said these results put scientists much closer to achieving efficient artificial photosynthesis. "Now we know how to measure local photocurrent in these materials, which have very low conductivity," she said. "The next step is to put all of this in a liquid electrolyte and do exactly the same thing. We have the tools. Now we know how to interpret the results, and how to analyze them, which is an important first step for moving forward."
Other co-authors of the study were Christoph Kastl, Jason Cooper, Adam Schwartzberg, and Ian Sharp (now at the Technical University of Munich) of Berkeley Lab; and Dominik Ziegler of Scuba Probe Technologies, a startup company and Molecular Foundry user. The research was funded by Berkeley Lab's Laboratory Directed Research and Development program (LDRD). The Molecular Foundry is a Department of Energy Office of Science User Facility.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

DOE/Lawrence Berkeley National Laboratory

Related Nanoscale Articles:

Information storage with a nanoscale twist
Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives.
Researchers use acoustic waves to move fluids at the nanoscale
A team of mechanical engineers at the University of California San Diego has successfully used acoustic waves to move fluids through small channels at the nanoscale.
Core technology springs from nanoscale rods
Rice University scientists have demonstrated a method for reversibly changing the light emitted from metallic nanorods by moving atoms from one place to another inside the particles.
Tooth decay -- drilling down to the nanoscale
With one in two Australian children reported to have tooth decay in their permanent teeth by age 12, researchers from the University of Sydney believe they have identified some nanoscale elements that govern the behavior of our teeth.
Beating the heat a challenge at the nanoscale
A little heat from a laser can disrupt measurements of materials at the nanoscale, according to Rice University scientists.
New nanoscale technologies could revolutionize microscopes, study of disease
Research completed through a collaboration with University of Missouri engineers, biologists, and chemists could transform how scientists study molecules and cells at sub-microscopic (nanoscale) levels.
New tool allows scientists to visualize 'nanoscale' processes
Chemists at UC San Diego have developed a new tool that allows scientists for the first time to see, at the scale of five billionths of a meter, 'nanoscale' mixing processes occurring in liquids.
Heat and light get larger at the nanoscale
In a new study recently published in Nature Nanotechnology, researchers from Columbia Engineering, Cornell, and Stanford have demonstrated heat transfer can be made 100 times stronger than has been predicted, simply by bringing two objects extremely close -- at nanoscale distances -- without touching.
Revealing the ion transport at nanoscale
EPFL researchers have shown that a law of physics having to do with electron transport at nanoscale can also be analogously applied to the ion transport.
Systems analysis -- from the nanoscale to the global
Two major research grants were announced today by the Engineering and Physical Sciences Research Council.

Related Nanoscale Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".