Nav: Home

Allergies: Mugwort pollen as main source of airborne endotoxins

July 18, 2018

A wide range of airborne substances can cause respiratory problems for asthma sufferers. These include bacteria and their components, which can trigger inflammations. How they become airborne has not been fully explained up to now. A science team from the Technical University of Munich (TUM) and the Helmholtz Zentrum München (HMGU) has shown that pollen from the mugwort plant is the main vector for bacteria and that this combination renders the pollen more aggressive. This, however, is not the case in certain Alpine regions such as Davos.

Over a period of five years, the TUM team along with colleagues from CK-CARE (Christine Kühne - Center for Allergy Research and Education, Davos) took daily measurements of the air in Munich's inner city and in the Alpine surrounds of Davos. Their two-fold task involved analyzing the different kinds of airborne plant pollen and measuring the concentration of endotoxins in the air. These chemical compounds, which are found on the surface of bacteria, can trigger inflammations in some people. Endotoxins are also released when bacteria die and disintegrate into their component parts.

Lower air pollution in Davos

When the scientists compared the pollen and bacterial constituents of the air in Munich with each other, they noticed a clear result: The volume of endotoxins in the air only ever increased if the pollen concentration of the mugwort plant also rose - regardless of climatic changes. Control measurements at the Alpine resort of Davos revealed significantly lower concentrations of pollen and endotoxins in the general air pollution. Even here, though, there was a clear correlation between mugwort pollen and the bacterial toxins.

Source of endotoxins identified

The two professors Claudia Traidl-Hoffmann and Jeroen Buters from TUM and HMGU oversaw the study. "We were able to demonstrate that the pollen acts as a 'taxi' for bacteria and thus also for their toxins. The pollen produced by mugwort, which is already aggressive enough, then becomes even more of a problem for allergy and asthma sufferers," they explain.

Mugwort (Artemisia vulgaris) is widely distributed throughout Europe and can grow up to two meters of height. Its pollen has long been recognized as a trigger for hay fever. The team also studied the bacterial growth on mugwort plants to narrow down the endotoxin type on the pollen. They discovered just one species of bacteria as the main source of the endotoxins: Pseudomonas luteola, which was present on 95 percent of the plants.

Bacteria magnify allergic effects of pollen

The research team was then able to confirm its findings with the help of a complex allergy model. They demonstrated that mugwort pollen together with small amounts of endotoxins from the identified bacterium triggered strong signs of inflammation in the respiratory tract. The same severe effects were not observed with lower doses of the endotoxin or with the endotoxin respectively the pollen by themselves.

"In the future, we will be able to indirectly use the pollen count to forecast very high levels of airborne endotoxin pollution. This will provide a useful warning for allergy and asthma sufferers," explains Jose Oteros, lead author of the study, which has been published in the "Journal of Allergy and Clinical Immunology".
-end-
Publication

Jose Oteros, Elke Bartusel, Francesca Alessandrini, Andrés Núñez, Diego Alejandro Moreno, Heidrun Behrendt, Carsten Schmidt-Weber, Claudia Traidl-Hoffmann, Jeroen Buters: Artemisia pollen is the main vector for airborne endotoxin, Journal of Allergy and Clinical Immunology, July 2018, DOI: 10.1016/j.jaci.2018.05.040 https://www.jacionline.org/article/S0091-6749(18)30999-0/ppt

Contact

Prof. Jeroen Buters
Technical University of Munich
Center of Allergy and Environment (ZAUM)
Tel.: +49 89 4140-3487
buters@tum.de

Prof. Claudia Traidl-Hoffmann
Technical University of Munich
Chair and Institute of Environmental Medicine
Tel.: +49 (0)821 - 598 6411
claudia.traidl-hoffmann@tum.de

More information

Professor Jeroen Buters is head of a research group at the Center of Allergy and Environment, ZAUM of TUM and Helmholtz Zentrum München. Professor Claudia Traidl-Hoffmann is director at the Chair and Institute of Environmental Medicine, UNIKA-T, and head physician at the Klinikum Augsburg. The study was funded by the Kühne Foundation (Christine Kühne - Center for Allergy Research & Education or CK-CARE project) and the AIRBIOTA-CM program (S2013/MAE-2874, Community of Madrid, Spain). J. Oteros was supported inter alia by the Postdoctoral Fellowship Program of Helmholtz Zentrum München.

Chair and Institute of Environmental Medicine, UNIKA-T https://www.unika-t.de/home-en-us/

Website of ZAUM https://www.zaum-online.de/

Website of CK-CARE https://www.ck-care.ch/en/ck-care

Technical University of Munich (TUM)

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#520 A Closer Look at Objectivism
This week we broach the topic of Objectivism. We'll be speaking with Keith Lockitch, senior fellow at the Ayn Rand Institute, about the philosophy of Objectivism as it's taught through Ayn Rand's writings. Then we'll speak with Denise Cummins, cognitive scientist, author and fellow at the Association for Psychological Science, about the impact of Objectivist ideology on society. Related links: This is what happens when you take Ayn Rand seriously Another Critic Who Doesn’t Care What Rand Thought or Why She Thought It, Only That She’s Wrong Quote is from "A Companion to Ayn Rand"