Nav: Home

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers

July 18, 2018

Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. This algae species is widely spread in the Russian Far East marine area. The acute toxic effect exhibited at concentrations of 100 mg/l of carbon nanotubes (CNTs) and silicon nanotubes (SiNTs) in the sea- or fresh water.

The international team of toxicologists led by scientists of Far Eastern Federal University (FEFU) has researched the environmental adverse effects of carbon nanotubes (CNTs), silicon nanotubes (SiNTs) and carbon nanofibers (CNFs) contained in the plastic materials and composites. Research outcome is published in the Environmental Research magazine.

The reason why researchers paid attention to the problem of the toxic effects of nanoparticles is the rapid growth of their applying in the different fields of the world manufacturing. It's estimated that to 2020 the world market of CNTs will reach 5,64 billion USD, i.e. it will more than doubled compared to 2000 when it was 2, 26 billion USD.

During the plastic and composites fabrication CNTs and SiNTs added in their structure to improve physical properties of the final materials. In the modern medicine nanotubes of different nature are proposed as the drugs adsorbents and drug delivery systems.

At the present time, all kinds of synthesized carbon-based nanoparticles are well described concerning their physical parameters. Nevertheless, scientists declare lack of toxicity data necessary for risk appraisal and modeling.

"From 60 to 80 percent of the world plastic materials and composites and about 10 percent of their annual production end up into the World Ocean where degradation of such materials takes several hundred years. As a rule, all these materials contain nanoparticles added for their physical properties improvement," comments on one of the article's authors Kirill Golokhavast, M.D., Ph.D., FEFU provost for science. "Marine microalgae toxicology research is of a big importance because they are widespread and constitute the basis of the food chain in the ocean."

For the nanotoxicology research purposes, scientists chose the unicellular marine microalgae Heterosigma akashiwo isolated from Peter the Great Gulf of Japan Sea. This choice was made due to the fact that this type of algae is typical for the Russian Far East and its research could be relevant for all microalgae of the local marine basin. The other important reason is that H. akashiwo has a thin cell wall that could render it rather susceptible for the chemical pollution.

The experiment performed in accordance to the guidance OECD No.201 (OECD, 2006) with minor modifications. For the criteria of nanotubes toxic effect scientist took the statistically significant reduction of the number of algal cells in experimental sample compared to control one. The toxicity tests were performed in 24-well cell culture plates.

Carbon nanotubes and nanofibers used in this research were synthesized in the Boreskov Institute of Catalysis (Novosibirsk, Russia) and their toxic effects were previously studied on rats.

Silicon nanotubes SiNTs and SiNTs INC-2 were kindly provided by the Department of Chemistry, Inha University Republic of Korea.

The research methodology is based on Raman spectroscopy to characterize samples of CNTs and confocal microscopy by optical microscope Axio Imager A2 (Carl Zeiss, Germany) with a magnification of 200 × and 600 × to image microalgae.

Algal cell analysis and counting of the propidium iodide stained cells were conducted by CytoFLEX flow cytometer (Beckman Coulter, USA) with the excitation light of 405 nm, 488 nm, and 638 nm.

Conducting the research, scientists concluded that CNTs and SiNTs toxic effect emerged when nanotubes concentration is 100 mg/l of water. The acute toxic effect revealed on the third day of the experiment and chronic intoxication took place on the seventh day. Herewith, SiNTs is much more toxic than CNTs due to the less size and hydrophilic properties of SiNTs nanotubes.

Scientists assumed that the main reason that caused the algal cells' death during the experiment is mechanical damage to cells integrity by nanoparticles. Compared to nanotubes carbon nanofibers didn't inhibit algal cells growth and didn't reveal toxicity at concentration 100 mg/l of water but influenced on the cells' shape distortion. The reason of these deformations, according to scientists, was Nickel (Ni) impurities contained in CNFs.

"The volume of nanomaterials presence in our life has increased enormously from early laboratory samples delivered in microgram quantities. Up to date, it's multi-ton production of plastic and composites contained nanoparticulate matter such as carbon and silicon nanotubes. The further the more important to know what environment burden may be caused by this particles. We already know that nanotube diameter is crucial to their toxicity. The thinner the significantly more toxic they are. Silicon nanotubes is more toxic than carbon, but carbon-based compounds could cause a series of neurodegenerative disorders, mainly due to oxidative stress accumulation and a parallel reduction in antioxidant protection mechanisms", comments on Aristidis Tsatsakis, article co-main author, D.Sc, PhD, the Director of the Department of Toxicology and Forensic Sciences of the Medical School at the University of Crete and the University Hospital of Heraklion.
-end-
Work was supported by Grant of the President of the Russian
Federation (MD-7737.2016.5); AK acknowledges support by Estonian
Research Agency's grant IUT 23-5
https://doi.org/10.1016/j.envres.2018.06.005
Far Eastern Federal University, Vladivostok, Russian Federation.
Boreskov Institute of Catalysis, Novosibirsk, Russian Federation.
A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia.
Inha University, Incheon, Republic of Korea.
National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia.
Laboratory of Toxicology, Medical School, University of Crete, Heraklion, Greece.
Pacific Geographical Institute FEB RAS, Vladivostok, Russian Federation.
for press: zverev.ase@dvfu.ru

Far Eastern Federal University

Related Nanoparticles Articles:

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?
Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.
Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.
A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.
Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.
Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.
What happens to gold nanoparticles in cells?
Gold nanoparticles, which are supposed to be stable in biological environments, can be degraded inside cells.
Lighting up cardiovascular problems using nanoparticles
A new nanoparticle innovation that detects unstable calcifications that can trigger heart attacks and strokes may allow doctors to pinpoint when plaque on the walls of blood vessels becomes dangerous.
Cutting nanoparticles down to size -- new study
A new technique in chemistry could pave the way for producing uniform nanoparticles for use in drug delivery systems.
Actively swimming gold nanoparticles
Bacteria can actively move towards a nutrient source -- a phenomenon known as chemotaxis -- and they can move collectively in a process known as swarming.
More Nanoparticles News and Nanoparticles Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.