Nav: Home

Water may be key to understanding sweetness

July 18, 2018

A cranberry, honey or a candy bar - which tastes the sweetest? These foods contain sugars that humans can perceive differently. A cranberry seems tart, whereas a candy bar can be excessively sweet, and honey is somewhere in the middle. Now, in a study in ACS' The Journal of Physical Chemistry Letters, researchers have shown that the perception of sweetness depends on molecular interactions between specific sugars and water in the saliva.

The sugars mannose, glucose and fructose have almost identical chemical structures. Yet fructose (found in many candy bars) is about twice as sweet as glucose (found in honey), whereas mannose (found in cranberries) is considered tasteless. Sugars stimulate specific protein receptors on the taste buds of the tongue, which sends a signal to the brain that a food tastes sweet. But scientists don't know why we perceive some sugars as being sweeter than others. Because these interactions take place in saliva, which is mostly water, Maria Antonietta Ricci and colleagues wondered if water might play a role.

The researchers used a technique called neutron diffraction with isotopic substitution to probe the structures of mannose, glucose and fructose in water. They found that none of the sugars substantially disrupted how water molecules interact with each other. However, the three sugars interacted with water molecules in different ways. Mannose, the least sweet of the sugars, formed longer and weaker hydrogen bonds with water than glucose or fructose. Fructose, the sweetest of the sugars, formed the shortest and strongest hydrogen bonds with water. The researchers surmise that shorter hydrogen bonds with water could allow the sugar molecule to bind more snugly with the protein receptor, causing greater stimulation and perception of sweetness.
-end-
The authors acknowledge funding from the National Research Council (CNR) of Italy, the ISIS Neutron and Muon Source, The Leverhulme Trust and the Ministry of Education, Universities and Research (MIUR) of Italy for the Grant of Excellence Departments, MIUR (ARTICOLO 1, COMMI 314 - 337 LEGGE 232/2016).

The abstract that accompanies this study is available here.

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us on Twitter | Facebook

American Chemical Society

Related Glucose Articles:

What drives inflammation in type 2 diabetes? Not glucose, says new research
Research led by Barbara Nikolajczyk, Ph.D., disproved the conventional wisdom that glucose was the primary driver of chronic inflammation in type 2 diabetes.
ALS patients may benefit from more glucose
A new study led by scientists at the UA has uncovered a potential new way to treat patients with ALS, a debilitating neurodegenerative disease.
Artificial muscles powered by glucose
Artificial muscles made from polymers can now be powered by energy from glucose and oxygen, just like biological muscles.
Efficiently producing fatty acids and biofuels from glucose
Researchers have presented a new strategy for efficiently producing fatty acids and biofuels that can transform glucose and oleaginous microorganisms into microbial diesel fuel, with one-step direct fermentative production.
Protein released from fat after exercise improves glucose
Exercise training causes dramatic changes to fat. Additionally, this 'trained' fat releases beneficial factors into the bloodstream.
WSU researchers create 3D-printed glucose biosensors
A 3D-printed glucose biosensor for use in wearable monitors has been created by Washington State University researchers.
Gut protein mutations shield against spikes in glucose
Why is it that, despite consuming the same number of calories, sodium and sugar, some people face little risk of diabetes or obesity while others are at higher risk?
Glucose binding molecule could transform the treatment of diabetes
Scientists from the University of Bristol have designed a new synthetic glucose binding molecule platform that brings us one step closer to the development of the world's first glucose-responsive insulin which, say researchers, will transform the treatment of diabetes.
Nutrients may reduce blood glucose levels
One amino acid, alanine, may produce a short-term lowering of glucose levels by altering energy metabolism in the cell.
Cancer hijacks the microbiome to glut itself on glucose
A University of Colorado Cancer Center study published today in the journal Cancer Cell shows that leukemia actively undercuts the ability of normal cells to consume glucose, thus leaving more glucose available to feed its own growth.
More Glucose News and Glucose Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.