Nav: Home

The relationship between charge density waves and superconductivity? It's complicated

July 18, 2018

For a long time, physicists have tried to understand the relationship between a periodic pattern of conduction electrons called a charge density wave (CDW), and another quantum order, superconductivity, or zero electrical resistance, in the same material. Do they compete? Co-exist? Co-operate? Do they go their separate ways?

For the first time, physicists at Ames Laboratory and their international collaborators were able to explore that relationship in the superconducting and CDW material niobium diselenide (NbSe2), through experiments using swift electron bombardment.

"What we are doing is 'poking' the system by introducing disorder into the crystal lattice," said Ames Laboratory scientist Ruslan Prozorov. "By knocking out some of the ions, impacting electrons create defects in the material. Both quantum ordered states (CDW and superconductivity) respond in certain ways to these additional defects, which we can measure."

The research, which included resistivity measurements, London penetration depth studies, and X-ray diffraction, showed that the relationship between CDW and superconductivity is complicated--in some ways the two states compete with each other, and in others, CDW assists superconductivity.

"Charge density wave competes with superconductivity for the same conduction electrons," said Prozorov. "As CDW is suppressed or disrupted, superconductivity is grabbing the electrons needed to form Cooper's pairs, which form superconducting condensate."

But CDW also assists superconductivity through its coupling to crystal lattice vibrations, called phonons. And phonons act as a "glue" between electrons to form a Cooper pair. At some threshold level of disorder, long-range ordered CDW disappears abruptly, and superconducting transition temperature is abruptly reduced as well.

"It is very important to understand the factors that influence superconductivity, in particular its critical temperature," said Prozorov. "Room temperature superconductors of future technologies will most likely be artificially assembled from individual atoms and single atomic layers fully utilizing basic mechanisms that lead to the enhancement of useful properties. Our research is a step in that direction."
The research is further discussed in the paper, "Using controlled disorder to probe the interplay between charge order and superconductivity in NbSe2," authored by Kyuil Cho, M. Ko?czykowski, S. Teknowijoyo, M.A. Tanatar, J. Guss, P.B. Gartin, J. Wilde, A. Kreyssig, R. McQueeny, A. Goldman, V. Mishra, P.J. Hirschfeld and R. Prozorov; and published in the Nature Communications.

The x-ray diffraction studies were performed at the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated by Argonne National Laboratory. The electronic irradiation was performed at the SIRIUS pelletron accelerator at Laboratoire des Solides Irradiés, Ecole Polytechnique.

Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

DOE/Ames Laboratory

Related Superconductivity Articles:

Looking at light to explore superconductivity in boron-diamond films
More than a decade ago, researchers discovered that when they added boron to the carbon structure of diamond, the combination was superconductive.
Discovery in new material raises questions about theoretical models of superconductivity
The US Department of Energy's Ames Laboratory has successfully created the first pure, single-crystal sample of a new iron arsenide superconductor, CaKFe4As4, and studies of this material have called into question some long-standing theoretical models of superconductivity.
Superconductivity with two-fold symmetry -- new evidence for topological superconductor SrxBi2Se3
Topological superconductivity is the quantum condensate of paired electrons with an odd parity of the pairing function.
Portable superconductivity systems for small motors
Superconductivity is one of modern physics' most intriguing scientific discoveries.
Graphene's sleeping superconductivity awakens
The intrinsic ability of graphene to superconduct (or carry an electrical current with no resistance) has been activated for the first time.
Superconductivity of pure Bismuth crystal at 0.00053 K
Scientists at TIFR Mumbai have discovered superconductivity of pure Bismuth crystal.
When crystal vibrations' inner clock drives superconductivity
Superconductivity is like an Eldorado for electrons, as they flow without resistance through a conductor.
Physicists induce superconductivity in non-superconducting materials
Researchers at the University of Houston have reported a new method for inducing superconductivity in non-superconducting materials, demonstrating a concept proposed decades ago but never proven.
A new spin on superconductivity
Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have made a discovery that could lay the foundation for quantum superconducting devices.
Superconductivity: After the scenario, the staging
Superconductivity with a high Tc continues to present a theoretical mystery.

Related Superconductivity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".