Nav: Home

Scientists discover a mechanism of drug resistance in breast and ovarian cancer

July 18, 2018

There is a highly sophisticated way to treat some breast and ovarian cancers--a class of drugs called PARP inhibitors, designed to exploit the very defects that make tumors with certain mutations especially deadly. Yet this targeted approach to cancer therapy sometimes fails, and scientists have anxiously sought to understand why.

Now, research at The Rockefeller University offers insight into the biology behind this drug resistance and fresh hope for fighting it. Scientists in Titia de Lange's lab and their colleagues have discovered the molecular means by which some cancers caused by errors in the gene BRCA1 evade treatment by drugs custom-tailored to kill them.

Described in Nature on July 18, their work challenges previous assumptions about the mechanics by which these PARP inhibitors succeed or fail to help patients.

"This is a complete shift in our understanding of the mechanism that underlies this form of treatment for BRCA1 cancers," says de Lange, the Leon Hess Professor.

Their discovery helps to explain why some cancers respond to PARP inhibitors, while others do not--an insight that could ultimately be used to help improve treatments for patients.

A defect--and an opportunity

Experts predict that about 288,000 new cases of breast and ovarian cancer will be diagnosed this year. A substantial fraction of these cancers are caused by harmful errors in two of the most infamous constituents of the human genome: the genes known as BRCA1 and BRCA2. Mutations in BRCA1--the subject of the new research--have been estimated to give a woman a roughly 72 percent chance of developing breast cancer and a 44 percent chance of developing ovarian cancer by the age of 80.

Both genes are tumor suppressors, meaning they normally help keep the body cancer-free. They code for proteins that are important for properly repairing a DNA molecule that has been cut somewhere along its length--a mishap called a double-strand break, since it severs both strands of the DNA helix. Without the BRCA genes, the broken DNA isn't fixed properly, producing mutations that can lead to cancer.

In recent years, the development of new drugs called PARP inhibitors made it possible to turn those same genetic defects against the disease. The drugs prompt the formation of double-strand breaks; unable to properly repair these breaks, BRCA-deficient tumor cells die.

However, some tumors that should be vulnerable to PARP inhibitors don't respond. Scientists think this failure occurs for a number of reasons, and researchers in de Lange's lab homed in on one culprit linked to resistance in BRCA1 cancers in particular.

For nearly a decade, scientists had known that the loss of a protein called 53BP1 made it possible for BRCA1-deficient cells to overcome their inherent defect and properly repair double-strand breaks. This type of resistance can emerge during or after PARP inhibitor treatment when some tumor cells thrive after mutating to lose 53BP1. But it wasn't clear why losing this protein gives these cancer cells such a deadly advantage.

A different mechanism

In order to prepare a broken DNA molecule for repair, one strand of the broken double-helix first needs to be trimmed back. It was assumed that 53BP1 prevents this pruning. Lose 53BP1, the thinking went, and BRCA1-deficient cells suddenly gain the ability to repair their DNA breaks.

In experiments, de Lange's team showed that 53BP1 does something different. Work by Zachary Mirman, a graduate student in the lab; Francisca Lottersberger, a former postdoc; and their colleagues found that 53BP1 instead helps to counteract the pruning process by rewriting sections of DNA cut from these loose strands.

In BRCA1-deficient cancers treated with PARP inhibitors, the rewriting function of 53BP1 leads to faulty repair of DNA and the death of the cancerous cells. Yet some of these cells manage to escape treatment by losing 53BP1. The work from de Lange's lab explains just how this change allows them to survive.

"In the big picture, this new insight into 53BP1's function and its role in drug resistance provides a foundation for advancements in PARP inhibitor therapy," Mirman says. These improvements could include the development of screening tests to see which tumors would best respond to PARP inhibitors, or to determine which other drugs should--or should not--be given along with them, the researchers say.
-end-


Rockefeller University

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.