Nav: Home

Billion-year-old lake deposit yields clues to Earth's ancient biosphere

July 18, 2018

A sample of ancient oxygen, teased out of a 1.4 billion-year-old evaporative lake deposit in Ontario, provides fresh evidence of what the Earth's atmosphere and biosphere were like during the interval leading up to the emergence of animal life.

The findings, published in the journal Nature, represent the oldest measurement of atmospheric oxygen isotopes by nearly a billion years. The results support previous research suggesting that oxygen levels in the air during this time in Earth history were a tiny fraction of what they are today due to a much less productive biosphere.

"It has been suggested for many decades now that the composition of the atmosphere has significantly varied through time," says Peter Crockford, who led the study as a PhD student at McGill University. "We provide unambiguous evidence that it was indeed much different 1.4 billion years ago."

The study provides the oldest gauge yet of what earth scientists refer to as "primary production," in which micro-organisms at the base of the food chain - algae, cyanobacteria, and the like - produce organic matter from carbon dioxide and pour oxygen into the air.

A smaller biosphere

"This study shows that primary production 1.4 billion years ago was much less than today," says senior co-author Boswell Wing, who helped supervise Crockford's work at McGill. "This means that the size of the global biosphere had to be smaller, and likely just didn't yield enough food - organic carbon - to support a lot of complex macroscopic life," says Wing, now an associate professor of geological sciences at University of Colorado at Boulder.

To come up with these findings, Crockford teamed up with colleagues from Yale University, University of California Riverside, and Lakehead University in Thunder Bay, Ontario, who had collected pristine samples of ancient salts, known as sulfates, found in a sedimentary rock formation north of Lake Superior. Crockford shuttled the samples to Louisiana State University, where he worked closely with co-authors Huiming Bao, Justin Hayles, and Yongbo Peng, whose lab is one of a handful in the world using a specialized mass-spectrometry technique capable of probing such materials for rare oxygen isotopes within sulfates.

The work also sheds new light on a stretch of Earth's history known as the "boring billion" because it yielded little apparent biological or environmental change.

"Subdued primary productivity during the mid-Proterozoic era - roughly 2 billion to 800 million years ago - has long been implied, but no hard data had been generated to lend strong support to this idea," notes Galen Halverson, a co-author of the study and associate professor of earth and planetary sciences at McGill. "That left open the possibility that there was another explanation for why the middle Proterozoic ocean was so uninteresting, in terms of the production and deposit of organic carbon." Crockford's data "provide the direct evidence that this boring carbon cycle was due to low primary productivity."

Exoplanet clues

The findings could also help inform astronomers' search for life outside our own solar system.

"For most of Earth history our planet was populated with microbes, and projecting into the future they will likely be the stewards of the planet long after we are gone," says Crockford, now a postdoctoral researcher at Princeton University and Israel's Weizmann Institute of Science. "Understanding the environments they shape not only informs us of our own past and how we got here, but also provides clues to what we might find if we discover an inhabited exoplanet."
-end-


McGill University

Related Organic Carbon Articles:

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.
Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?
First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.
New route to carbon-neutral fuels from carbon dioxide discovered by Stanford-DTU team
A new way to convert carbon dioxide into the building block for sustainable liquid fuels was very efficient in tests and did not have the reaction that destroys the conventional device.
How much carbon the land can stomach with more carbon dioxide in the air
Researchers from 28 institutions in nine countries succeeded in quantifying carbon dioxide fertilization for the past five decades, using simulations from 12 terrestrial ecosystem models and observations from seven field carbon dioxide enrichment experiments.
Extreme wildfires threaten to turn boreal forests from carbon sinks to carbon sources
A research team investigated the impact of extreme fires on previously intact carbon stores by studying the soil and vegetation of the boreal forest and how they changed after a record-setting fire season in the Northwest Territories in 2014.
Organic carbon hides in sediments, keeping oxygen in atmosphere
A new study from researchers at the Woods Hole Oceanographic Institution (WHOI) and Harvard University may help settle a long-standing question--how small amounts of organic carbon become locked away in rock and sediments, preventing it from decomposing.
Organic electronics: a new semiconductor in the carbon-nitride family
Teams from Humboldt-Universität and the Helmholtz-Zentrum Berlin have explored a new material in the carbon-nitride family.
Verifying 'organic' foods
Organic foods are increasingly popular -- and pricey. Organic fruits and vegetables are grown without synthetic pesticides, and because of that, they are often perceived to be more healthful than those grown with these substances.
Improving carbon-capturing with metal-organic frameworks
EPFL chemical engineers have designed an easy method to achieve commercially attractive carbon-capturing with metal-organic frameworks.
More Organic Carbon News and Organic Carbon Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.