Nav: Home

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

July 18, 2018

WEST LAFAYETTE, Ind. -- Your everyday permanent markers, glue sticks and packing tape may offer a surprisingly low-tech solution to a long-standing nuisance in the manufacturing industry: Making soft and ductile, or so-called "gummy" metals easier to cut.

What makes inks and adhesives effective isn't their chemical content, but their stickiness to the surface of any gummy metal such as nickel, aluminum, stainless steels or copper, researchers at Purdue University and the University of West Florida find in a study recently published in Physical Review Applied.

These adhesives help achieve a smoother, cleaner and faster cut than current machining processes, impacting applications ranging from the manufacturing of orthopedic implants and surgical instruments to aerospace components.

"A wide range of products rely on the machining of gummy metals. These could be something we use every day, such as the valve in a sink faucet, or something more critical like a compressor part in the jet engine of an airplane," said James Mann, assistant professor of mechanical engineering at the University of West Florida and Purdue alumnus.

If a significant improvement can be made to the "machinability" of gummy metals or alloys - which is how well they cut, drill or grind - then there is potential to lower the cost of products, improve their performance or enable new and improved designs.

"Gummy metals characteristically deform in a very wiggly manner," said Srinivasan Chandrasekar, Purdue professor of industrial engineering. "This wiggly flow involves significant energy consumption, which means that these metals require more force to machine than even some hard metals. We needed to find a way to suppress this wiggly flow."

Getting rid of the wiggles means that the metal now tends to act more like a brittle ceramic or glass in the spot where it needs to be cut.

One well-known way to make the gummy metal brittle is by coating it with a suitable liquid metal, such as gallium in the case of aluminum. Liquid metals like these, however, tend to work too well; diffusing through the surface and causing the whole metal to crumble into a powder.

"This makes the metal being machined unusable," Chandrasekar said.

Other attempts met with limited success tended to be either toxic or result in tears and cracks on the machined surface. The researchers then began to explore other benign chemical media that would cut cleaner.

Marking with ink or attaching any adhesive on the metal's surface dramatically reduced the force of cutting without the whole metal falling apart, leaving a clean cut in seconds. The quality of the machined surface also greatly improved. Watch a YouTube video to see how at https://youtu.be/gjwPAgFAQUE.

Stickiness didn't initially stand out as a solution that permanent markers, glue sticks and tape have in common.

"We looked at the chemical ingredients of the permanent ink, isolated each of those on the metal's surface, and there was no noticeable effect," said Anirudh Udupa, lead author on the study and a postdoctoral researcher in Purdue's School of Industrial Engineering. "So we realized that it's not a particular chemical but the ink itself sticking to the metal through a physical adsorption mechanism."

The Sharpie and adhesives also appeared to work on many gummy metals, regardless of the cutting tool.

"In hindsight, we can tell you why certain things weren't successful in previous work. It all comes back to the existence of this wiggly flow," said Koushik Viswanathan, Purdue postdoctoral researcher in industrial engineering. "Some people might have been trying to cut copper, for example, that was in the hard state rather than in the soft state."

To the researchers' knowledge, using permanent markers, glues or tape to make gummy metals easier to machine does not pose any environmental hazards.

Next, Chandrasekar's group will be assessing the degree of stickiness that works best for cutting gummy metals and exploring ways to advance the application of this technology into industrial practice.
-end-
This research is supported by the U.S. Army Research Office (W911NF-15-1-0591), the National Science Foundation (CMMI 1562470 and DMR 1610094) and the U.S. Department of Energy (DE-EE0007868).

Purdue University

Related Adhesives Articles:

Stanford engineers design a robotic gripper for cleaning up space debris
Researchers combined gecko-inspired adhesives and a custom robotic gripper to create a device for grabbing space debris.
Reversible saliva allows frogs to hang on to next meal
A Georgia Tech study says a frog tongue's stickiness is caused by a reversible saliva in combination with a super soft tongue.
University of Akron researchers find thin layers of water can become ice-like at room temperature
New research by scientists at The University of Akron shows that a nanometer-thin layer of water between two charged surfaces exhibits ice-like tendencies that allow it to withstand pressures of hundreds of atmospheres.
Patch delivers drug, gene, and light-based therapy to tumor sites
A research team led by Natalie Artzi of MIT and Brigham and Women's hospital delivers drug, gene, and light-based therapy directly to tumor sites, with promising results.
UNIST engineers octopus-inspired smart adhesive pads
A joint research team, affiliated with Ulsan National Institute of Science and Technology, South Korea, has developed octopus-inspired smart adhesive pads.
Fetal surgery stands to advance from new glues inspired by mussels
UC Berkeley bioengineer Philip Messersmith is making better glues for medical procedures inside the body, a wet environment, applying what he and others before him have learned about underwater superglue-making techniques that have been developed and elaborated upon through eons of evolution by mussels, a brainless bivalve.
Ivy's powerful grasp could lead to better medical adhesives, stronger battle armor
English ivy's natural glue might hold the key to new approaches to wound healing, stronger armor for the military and maybe even cosmetics with better staying power.
Switch and stick
The chemical element gallium could be used as a new reversible adhesive that allows its adhesive effect to be switched on and off with ease.
Using static electricity, RoboBees can land and stick to surfaces
Harvard roboticists demonstrate that their flying microrobots, nicknamed the RoboBees, can now perch during flight to save energy - like bats, birds or butterflies.
Cling-on warriors
An interdisciplinary group of researchers at UC Santa Barbara has taken strides in the development of an underwater adhesive that has the potential for a variety of biomedical and non-biological applications.

Related Adhesives Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".