Nav: Home

Glowing bacteria on deep-sea fish shed light on evolution, 'third type' of symbiosis

July 18, 2018

ITHACA, N.Y. - You may recognize the anglerfish from its dramatic appearance in the hit animated film Finding Nemo, as it was very nearly the demise of clownfish Marlin and blue-tang fish Dory. It lives most of its life in total darkness more than 1,000 meters below the ocean surface. Female anglerfish sport a glowing lure on top of their foreheads, basically a pole with a light bulb on its end, where bioluminescent bacteria live. The light-emitting lure attracts both prey and potential mates to the fish.

Despite its recent fame, little is known about anglerfish and their symbiotic relationship with these brilliant bacteria, because the fish are difficult to acquire and study.

For the first time, scientists have sequenced and analyzed the genomes of bacteria that live in anglerfish bulbs. The bacteria were taken from fish specimens collected in the Gulf of Mexico.

The researchers report their findings in a new study, published in the journal mBio. The analysis revealed that the bacteria have lost some of the genes that are needed to live freely in the water. That's because the fish and bacteria developed a tight, mutually beneficial relationship, where the bacteria generate light while the fish supplies nutrients to the microbe.

"What's particularly interesting about this specific example is that we see evidence that this evolution is still underway, even though the fish themselves evolved about 100 million years ago," said Tory Hendry, assistant professor of microbiology at Cornell University and the paper's lead author. "The bacteria are still losing genes, and it's unclear why."

Most of the known symbiotic relationships between organisms and bacteria are between either a host and free-living bacteria that don't evolve to maintain a symbiosis, or a host and intracellular bacteria that live inside the host's cells and undergo huge reductions in their genomes through evolution.

The bacteria inside the bulb in anglerfish represents a third type of symbiosis, where preliminary data suggest these bacteria may move from the anglerfish bulb to the water. "It's a new paradigm in our understanding of symbiosis in general; this is a third type of situation where the bacteria are not actually stuck with their host but they are undergoing evolution," Hendry said.

Genetic sequencing showed that the genomes of these anglerfish bioluminescent bacteria are 50 percent reduced compared with their free-swimming relatives. The bacteria have lost most of the genes associated with making amino acids and breaking down nutrients other than glucose, suggesting the fish may be supplying the bacteria with nutrients and amino acids.

At the same time, the bacteria have retained some genes that are useful in water outside the host. They have full pathways to make a flagellum, a corkscrew tail for moving in water. The bacteria had lost most of the genes involved in sensing chemical cues in the environment that may lead to food or other useful compounds, though a few remained, leaving a subset of chemicals they still respond to. "They were pared down to something they cared about," Hendry said.
-end-
The study was funded by the Gulf of Mexico Research Initiative.

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews.

Cornell University

Related Bacteria Articles:

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.