Nav: Home

Origami-inspired device helps marine biologists study aliens

July 18, 2018

(NEW YORK, NY) --Scientists have tried to find the safest and most effective ways to explore marine life in the oceanic water, the largest and least explored environment on Earth, for years. Each time, they were faced with the same challenge: How to capture delicate or gelatinous pelagic animals - like jellyfish, squid, and octopuses - without harming them? A new device developed by researchers at Harvard University's Wyss Institute, John A. Paulson School of Engineering and Applied Sciences (SEAS), Radcliffe Institute for Advanced Study and the City University of New York's Baruch College safely traps delicate sea creatures inside a folding polyhedral enclosure and lets them go without harm using a novel, origami-inspired design. The research, co-authored by David Gruber, Presidential Professor of Biology and Environmental Science at Baruch College, is published in Science Robotics.

"We approach these animals as if they are works of art: would we cut pieces out of the Mona Lisa to study it? No - we'd use the most innovative tools available. These deep-sea organisms, some being thousands of years old, deserve to be treated with a similar gentleness when we're interacting with them," said Gruber who is also a 2017-2018 Radcliffe Fellow and National Geographic Explorer.

RAD (rotary actuated dodecahedron), designed for midwater interaction, is an innovative device that uses rotary-actuated folding polyhedrons to quickly and safely capture marine organisms. It consists of five identical 3D-printed polymer "pedals" that are attached to a series of rotating joints that link together to form a scaffold. The structure rotates at its joints and folds up into a hollow dodecahedron when a single motor applies a torque at the petals meeting point.

Zhi Ern Teoh, a former Wyss Postdoctoral Fellow, got the idea to apply folding properties to underwater sample collection in 2014. "I was building microrobots by hand in graduate school, which was very painstaking and tedious work, and I wondered if there was a way to fold a flat surface into a three-dimensional shape using a motor instead," he said.

The RAD sampler design is perfect for the difficult and unpredictable deep ocean environment "because its controls are very simple, so there are fewer elements that can break. It's also modular, so if something does break, we can simply replace that part and send the sampler back down into the water," said Teoh. "This folding design is also well-suited to be used in space, which is similar to the deep ocean in that it's a low-gravity, inhospitable environment that makes operating any device challenging."

Teoh and Brennan Phillips, Assistant Professor of Ocean Engineering at the University of Rhode Island, are currently working on a more rugged version of the RAD sampler for use in heavier-duty underwater tasks, like marine geology, while Gruber and Robert Wood, Ph.D., engineer at Cooper Perkins, are focusing on further refining the sampler's more delicate abilities. "We'd like to add cameras and sensors to the sampler so that, in the future, we can capture an animal, collect lots of data about it like its size, material properties, and even its genome, and then let it go, almost like an underwater medical check-up," said Gruber.
-end-
This research was supported by the National Science Foundation and the National Academy of Sciences.

The City University of New York is the nation's leading urban public university. Founded in New York City in 1847, the University comprises 24 institutions: 11 senior colleges, seven community colleges, and additional professional schools. The University serves nearly 275,000 degree-credit students and 218,083 adults, continuing and professional education students.

For more information, please contact: Shante Booker (shante.booker@cuny.edu) or visit http://www.cuny.edu/research

The City University of New York

Related Water Articles:

Water, water, nowhere
Researchers at the University of Pittsburgh's Swanson School of Engineering have found that the unusual properties of graphane -- a two-dimensional polymer of carbon and hydrogen -- could form a type of anhydrous 'bucket brigade' that transports protons without the need for water, potentially leading to the development of more efficient hydrogen fuel cells for vehicles and other energy systems.
Advantage: Water
When water comes in for a landing on the common catalyst titanium oxide, it splits into hydroxyls just under half the time.
What's really in the water
Through a five-year, $500,000 CAREEER Award from the National Science Foundation, a civil and environmental engineering research group at the University of Pittsburgh's Swanson School of Engineering will be developing new DNA sequencing methods to directly measure viral loads in water and better indicate potential threats to human health.
Jumping water striders know how to avoid breaking of the water surface
When escaping from attacking predators, different water strider species adjust their jump performance to their mass and morphology in order to jump off the water as fast and soon as possible without breaking of the water surface.
Water, water -- the two types of liquid water
There are two types of liquid water, according to research carried out by an international scientific collaboration.
Just add water? New MRI technique shows what drinking water does to your appetite, stomach and brain
Stomach MRI images combined with functional fMRI of the brain activity have provided scientists new insight into how the brain listens to the stomach during eating.
UM researchers found shallow-water corals are not related to their deep-water counterparts
A new study led by scientists at the University of Miami Rosenstiel School of Marine and Atmospheric Science found that shallow-reef corals are more closely related to their shallow-water counterparts over a thousand miles away than they are to deep-water corals on the same reef.
Saline water better than soap and water for cleaning wounds, researchers find
Researchers found that very low water pressure was an acceptable, low-cost alternative for washing out open fractures, and that the reoperation rate was higher in the group that used soap.
UTA research predicting lake levels, moving water to yield better data for water providers
A University of Texas at Arlington environmental engineer is creating an integrated decision support tool for optimal operation of water supply systems that will allow water providers to make better decisions about when to turn on pumps to transfer water from one reservoir system to another and when to release water downstream from the reservoirs.
Surfing water molecules could hold the key to fast and controllable water transport
Scientists at UCL have identified a new and potentially faster way of moving molecules across the surfaces of certain materials.

Related Water Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".