Nav: Home

Origami-inspired device helps marine biologists study aliens

July 18, 2018

(NEW YORK, NY) --Scientists have tried to find the safest and most effective ways to explore marine life in the oceanic water, the largest and least explored environment on Earth, for years. Each time, they were faced with the same challenge: How to capture delicate or gelatinous pelagic animals - like jellyfish, squid, and octopuses - without harming them? A new device developed by researchers at Harvard University's Wyss Institute, John A. Paulson School of Engineering and Applied Sciences (SEAS), Radcliffe Institute for Advanced Study and the City University of New York's Baruch College safely traps delicate sea creatures inside a folding polyhedral enclosure and lets them go without harm using a novel, origami-inspired design. The research, co-authored by David Gruber, Presidential Professor of Biology and Environmental Science at Baruch College, is published in Science Robotics.

"We approach these animals as if they are works of art: would we cut pieces out of the Mona Lisa to study it? No - we'd use the most innovative tools available. These deep-sea organisms, some being thousands of years old, deserve to be treated with a similar gentleness when we're interacting with them," said Gruber who is also a 2017-2018 Radcliffe Fellow and National Geographic Explorer.

RAD (rotary actuated dodecahedron), designed for midwater interaction, is an innovative device that uses rotary-actuated folding polyhedrons to quickly and safely capture marine organisms. It consists of five identical 3D-printed polymer "pedals" that are attached to a series of rotating joints that link together to form a scaffold. The structure rotates at its joints and folds up into a hollow dodecahedron when a single motor applies a torque at the petals meeting point.

Zhi Ern Teoh, a former Wyss Postdoctoral Fellow, got the idea to apply folding properties to underwater sample collection in 2014. "I was building microrobots by hand in graduate school, which was very painstaking and tedious work, and I wondered if there was a way to fold a flat surface into a three-dimensional shape using a motor instead," he said.

The RAD sampler design is perfect for the difficult and unpredictable deep ocean environment "because its controls are very simple, so there are fewer elements that can break. It's also modular, so if something does break, we can simply replace that part and send the sampler back down into the water," said Teoh. "This folding design is also well-suited to be used in space, which is similar to the deep ocean in that it's a low-gravity, inhospitable environment that makes operating any device challenging."

Teoh and Brennan Phillips, Assistant Professor of Ocean Engineering at the University of Rhode Island, are currently working on a more rugged version of the RAD sampler for use in heavier-duty underwater tasks, like marine geology, while Gruber and Robert Wood, Ph.D., engineer at Cooper Perkins, are focusing on further refining the sampler's more delicate abilities. "We'd like to add cameras and sensors to the sampler so that, in the future, we can capture an animal, collect lots of data about it like its size, material properties, and even its genome, and then let it go, almost like an underwater medical check-up," said Gruber.
-end-
This research was supported by the National Science Foundation and the National Academy of Sciences.

The City University of New York is the nation's leading urban public university. Founded in New York City in 1847, the University comprises 24 institutions: 11 senior colleges, seven community colleges, and additional professional schools. The University serves nearly 275,000 degree-credit students and 218,083 adults, continuing and professional education students.

For more information, please contact: Shante Booker (shante.booker@cuny.edu) or visit http://www.cuny.edu/research

The City University of New York

Related Water Articles:

Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.
Our water cycle diagrams give a false sense of water security
Pictures of the earth's water cycle used in education and research throughout the world are in urgent need of updating to show the effects of human interference, according to new analysis by an international team of hydrology experts.
Water management helped by mathematical model of fresh water lenses
In this paper, the homeostasis of water lenses was explained as an intricate interaction of the following physical factors: infiltration to the lens from occasional (sporadic) rains, permanent evaporation from the water table, buoyancy due to a density contrast of the fresh and saline water, and the force of resistance to water motion from the dune sand.
The age of water
Groundwater in Egypt's aquifers may be as much as 200,000 years old and that's important to know as officials in that country seek to increasing the use of groundwater, especially in the Eastern Desert, to mitigate growing water stress and allow for agricultural projects.
Water that never freezes
Can water reach minus 263 degrees Celsius without turning into ice?
Peanuts that do more with less water
Researchers are studying peanut varieties to find a 'water conservation' trait.
Molecular adlayer produced by dissolving water-insoluble nanographene in water
Even though nanographene is insoluble in water and organic solvents, Kumamoto University and Tokyo Institute of Technology researchers have found a way to dissolve it in water.
Water-worlds are common: Exoplanets may contain vast amounts of water
Scientists have shown that water is likely to be a major component of those exoplanets (planets orbiting other stars) which are between two to four times the size of Earth.
Artificial intelligence saves water for water users associations
A research group at the University of Cordoba has developed a model based on artificial intelligence techniques that can predict how much water each water user will use.
In desert trials, next-generation water harvester delivers fresh water from air
UC Berkeley scientists who last year built a prototype harvester to extract water from the air using only the power of the sun have scaled up the device to see how much water they can capture in arid conditions in Arizona.
More Water News and Water Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.