Nav: Home

Identified RNA molecules that regulate action of male hormone in prostate cancer

July 18, 2018

In most cases of prostate cancer, tumor cell growth is stimulated by the action of male hormones, or androgens, such as testosterone and dihydrotestosterone (DHT).

For this to happen, these hormones have to bind to androgen receptors, proteins located mostly in the cytoplasm of prostate cells. When hormone and receptor bind, they migrate to the cell nucleus, where they either activate or inhibit a number of genes to create a gene expression pattern that favors tumor proliferation.

A study published in the journal Frontiers in Genetics has identified 600 novel long noncoding RNA molecules (lncRNAs) that appear to be responsible for fine regulation of this process. LncRNAs are a large class of RNA molecules that have a length of more than 200 nucleotides and do not encode proteins.

"The study raises the hypothesis that some of these lncRNAs make a prostate tumor more aggressive. If confirmed by future research, the discovery opens up a world of new possibilities," said Sergio Verjovski-Almeida, a researcher at Butantan Institute in São Paulo State, Brazil, and principal investigator for the project supported by São Paulo Research Foundation - FAPESP.

As Verjovski-Almeida explained, only 2% of the human genome produces messenger RNA molecules, which carry the genetic information needed for protein synthesis. The other 98%, formerly dismissed as "junk DNA", produces different types of RNA termed noncoding because they are generally not translated into proteins but modulate the expression of neighboring genes or the action of proteins produced by those genes. In other words, they govern the functioning of the genome by means of epigenetic regulation - not altering DNA itself but influencing gene expression.

"These lncRNAs are powerful regulators of gene expression. They interact with and magnify the effect of regulatory proteins. This is what we believe the molecules we identified are doing to androgen receptors in a prostate tumor," said Verjovski-Almeida, who is also a professor in the University of São Paulo's Chemistry Institute (IQ-USP).

The FAPESP-supported investigation began with deep sequencing of molecules expressed in a prostate cancer cell line. The deep-sequencing technique enables billions of nucleotides to be sequenced at the same time, increasing the likelihood of detecting molecules that are expressed in small amounts and that would go unnoticed in more superficial studies.

"The more deeply we sequence a tissue, the more we discover RNA molecules expressed specifically at the site in question, as is typically the case for lncRNAs," Verjovski-Almeida said.

Some 3,000 different lncRNAs expressed in prostate tumors had already been described in the scientific literature. The study performed by the group at Butantan Institute revealed another 4,000 novel molecules of the same kind.

In light of these new findings, the researchers then decided to reanalyze raw data from studies published by other groups in which molecules expressed in tumors from patients with prostate cancer were compared with those expressed in healthy prostate tissue.

"Most of these previous studies used the microarray method, which sequences tissue using a panel of known target genes. So unknown genes or genes not included in the panel simply don't show up in the results of the analysis, even if they're expressed in the tissue," Verjovski-Almeida said.

When they reanalyzed the raw data from previously published research, the Butantan Institute group found that 65 lncRNAs were more highly expressed in prostate tumors than in healthy tissue.

"The original studies had identified increased expression of only 40 of these molecules. The rest were passed over for lack of a complete benchmark on prostate lncRNAs. These are genes that could be involved in the development of prostate cancer and need to be better explored," Verjovski-Almeida said.

Regulation of hormone action

The next step was to find out whether these lncRNAs interacted with androgen receptors. To do so, the researchers used a technique known as RNA immunoprecipitation (RIP).

"We detected more than 600 lncRNAs bound to androgen receptors in prostate tumors. These are molecules that bind to the complex formed by androgen and its receptor in the cell nucleus, possibly for the purpose of fine regulation of the gene activation and inhibition process," Verjovski-Almeida said.

Androgen receptors are known to be capable of binding to more than 10,000 different genome sites upon migrating to cell nuclei. However, they do not alter the expression of 10,000 genes when this occurs.

"In order to find out what will be activated and inhibited, we need an additional program, and we believe some of the lncRNAs identified do indeed play this role," said the FAPESP-funded researcher.

The next technique used by the group was a machine learning algorithm, a type of artificial intelligence tool that analyzes a large amount of data by statistical methods in search of repeating patterns that can be used as a basis for prediction or decision making. In this manner, they found that lncRNAs were present at the genome sites where gene expression was altered (activated or inhibited) by androgen receptors.

The same sites were also found to contain concentrations of certain histones, a family of basic proteins that modulate the spatial organization of DNA in the nucleus and activate or inhibit gene expression. Generally speaking, genes were more active in the presence of these regulatory proteins.

"We can't yet say whether the presence of these lncRNAs is a cause or effect of the abundance of certain activating histones and of the alterations to gene expression, but the fact is that they mark specific regions of genes that are activated or inhibited in the presence of androgen. With these findings, we built a panel of possible regulators of the receptor's action in prostate cancer," Verjovski-Almeida said.

Only one of these lncRNAs had been shown to bind to androgen receptors and associated with increased tumor aggressiveness in previous research, he added.

"It may be that more of these 600 lncRNAs we found to bind to the receptor also act through a similar mechanism," he said. "If you identify lncRNAs that regulate important genes, you can try to intervene in their transcription or in the regulation process. It opens up a world of possibilities."
-end-
About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. For more information: http://www.fapesp.br/en.

Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Prostate Cancer Articles:

The Lancet: Prostate cancer study finds molecular imaging could transform management of patients with aggressive cancer
Results from a randomised controlled trial involving 300 prostate cancer patients find that a molecular imaging technique is more accurate than conventional medical imaging and recommends the scans be introduced into routine clinical practice.
Common genetic defect in prostate cancer inspires path to new anti-cancer drugs
Researchers found that, in prostate cancer, a mutation leading to the loss of one allele of a tumor suppressor gene known as PPP2R2A is enough to worsen a tumor caused by other mutations.
First prostate cancer therapy to target genes delays cancer progression
For the first time, prostate cancer has been treated based on the genetic makeup of the cancer, resulting in delayed disease progression, delayed time to pain progression, and potentially extending lives in patients with advanced, metastatic prostate cancer, reports a large phase 3 trial.
Men taking medications for enlarged prostate face delays in prostate cancer diagnosis
University of California San Diego School of Medicine researchers report that men treated with medications for benign prostatic hyperplasia (enlarged prostate) experienced a two-year delay in diagnosis of their prostate cancer and were twice as likely to have advanced disease upon diagnosis.
CNIO researchers confirm links between aggressive prostate cancer and hereditary breast cancer
The study has potential implications for families with members suffering from these types of tumours who are at an increased risk of developing cancer.
Distinguishing fatal prostate cancer from 'manageable' cancer now possible
Scientists at the University of York have found a way of distinguishing between fatal prostate cancer and manageable cancer, which could reduce unnecessary surgeries and radiotherapy.
Researchers find prostate cancer drug byproduct can fuel cancer cells
A genetic anomaly in certain men with prostate cancer may impact their response to common drugs used to treat the disease, according to new research at Cleveland Clinic.
ASCO and Cancer Care Ontario update guideline on radiation therapy for prostate cancer
The American Society of Clinical Oncology (ASCO) and Cancer Care Ontario today issued a joint clinical practice guideline update on brachytherapy (internal radiation) for patients with prostate cancer.
Patient prostate tissue used to create unique model of prostate cancer biology
For the first time, researchers have been able to grow, in a lab, both normal and primary cancerous prostate cells from a patient, and then implant a million of the cancer cells into a mouse to track how the tumor progresses.
Moffitt Cancer Center awarded $3.2 million grant to study bone metastasis in prostate cancer
Moffitt researchers David Basanta, Ph.D., and Conor Lynch, Ph.D., have been awarded a U01 grant to investigate prostate cancer metastasis.
More Prostate Cancer News and Prostate Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.