Nav: Home

Cities as study proxies for climate change

July 18, 2018

Cities can serve as useful proxies to study and predict the effects of climate change, according to a North Carolina State University research review that tracks urbanization's effects on plant and insect species.

Cities often display many of the predicted effects of climate change, including higher temperatures, higher carbon dioxide concentration and higher drought rates. Some of those effects are due to impermeable building materials like concrete and glass, which help create "urban heat islands" and prevent water from soaking into soil.

Experiments in cities also have advantages over experiments performed in labs or in specially designed "growth chambers" that attempt to mimic higher temperature or drier soil conditions. Cities are larger than experimental chambers and organisms like trees have lived at higher temperatures their entire lives in cities, whereas other experimental methods can only increase temperature for short periods. Thus, urban areas can show how plants and animals respond to changes in climate over long stretches of time, which lab and growth chamber studies can't quite match.

"Our review synthesized existing studies that used cities as proxies for climate change, particularly higher temperatures," said Steve Frank, a professor in the Department of Entomology and Plant Pathology at NC State and a co-author of a paper describing the research.

In cities like Raleigh, N.C., Frank says the effects of urban heat islands on trees and bees are clear and in some cases match effects of climate warming in natural areas. Higher temperatures mean that trees are more susceptible to pests; Frank's work with insects on red maple trees highlights these results. City bees unaccustomed to high temperatures may leave heat islands to live in cooler city zones or in rural areas. That means some city plants may not be pollinated efficiently.

"However, we still need to figure out in which instances cities are good proxies for climate change and in which instances they are not," Frank said. "Cities have unique features like buildings and cars that could be confounding variables and need to be accounted for. Likewise, effects on small or immobile organisms like insects and plants may be different from effects on birds, for instance, that could leave a city if it gets too hot."

Most of the reviewed research took place in North America and Europe. Frank said that more research is needed in African and Asian cities, where biodiversity hotspots may see large climate effects.

"Cities could provide a fruitful avenue for climate studies and help predict which species may expand their range or become pests as the climate warms, and which species may be in trouble," Frank said. "This information will help people involved in conservation and land management plan for the future."
-end-
The research appears in Proceedings of the Royal Society B. Eleanor C. Lahr, a former NC State post-doctoral researcher, is the paper's first author. Rob Dunn, a professor of applied ecology, co-authored the paper.

The research was supported by Cooperative Agreement nos. G11AC20471, G13AC00405 and G15AP00153 from the United States Geological Survey; by an Agriculture and Food Research Initiative Competitive grant no. 2013-02476 and an ARPD grant no. 2016-70006-25827 from the USDA National Institute of Food and Agriculture; and by NC State's Department of Entomology and Plant Pathology.

- kulikowski -

Note to editors: An abstract of the paper follows.

"Getting ahead of the curve: cities as surrogates for global change"

Authors: Eleanor C. Lahr, Robert R. Dunn, Steven D. Frank, North Carolina State University

Published: Online July 11, 2018 in Proceedings of the Royal Society B

DOI: 10.1098/rspb.2018.0643

Abstract: Urbanization represents an unintentional global experiment that can provide insights into how species will respond and interact under future global change scenarios. Cities produce many conditions that are predicted to occur widely in the future, such as warmer temperatures, higher carbon dioxide (CO2) concentrations and exacerbated droughts. In using cities as surrogates for global change, it is challenging to disentangle climate variables - such as temperature - from co-occurring or confounding urban variables - such as impervious surface -and then to understand the interactive effects of multiple climate variables on both individual species and species interactions. However, such interactions are also difficult to replicate experimentally, and thus the challenges of cities are also their unique advantage. Here, we review insights gained from cities, with a focus on plants and arthropods, and how urban findings agree or disagree with experimental predictions and historical data. We discuss the types of hypotheses that can be best tested in cities, caveats to urban research and how to further validate cities as surrogates for global change. Lastly, we summarize how to achieve the goal of using urban species responses to predict broader regional- and ecosystem-level patterns in the future.

North Carolina State University

Related Climate Change Articles:

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...