Nav: Home

Red wine's resveratrol could help Mars explorers stay strong, says Harvard study

July 18, 2019

Mars is about 9 months from Earth with today's tech, NASA reckons. As the new space race hurtles forward, Harvard researchers are asking: how do we make sure the winners can still stand when they reach the finish line?

Published in Frontiers in Physiology, their study shows that resveratrol substantially preserves muscle mass and strength in rats exposed to the wasting effects of simulated Mars gravity.

Space supplements

Out in space, unchallenged by gravity, muscles and bones weaken. Weight-bearing muscles are hit first and worst, like the soleus muscle in the calf.

"After just 3 weeks in space, the human soleus muscle shrinks by a third," says Dr. Marie Mortreux, lead author of the NASA-funded study at the laboratory of Dr. Seward Rutkove, Beth Israel Deaconess Medical Center, Harvard Medical School. "This is accompanied by a loss of slow-twitch muscle fibers, which are needed for endurance."

To allow astronauts to operate safely on long missions to Mars - whose gravitational pull is just 40% of Earth's - mitigating strategies will be needed to prevent muscle deconditioning.

"Dietary strategies could be key," says Dr. Mortreux, "especially since astronauts travelling to Mars won't have access to the type of exercise machines deployed on the ISS."

A strong candidate is resveratrol: a compound commonly found in grape skin and blueberries that has been widely investigated for its anti-inflammatory, anti-oxidative, and anti-diabetic effects.

"Resveratrol has been shown to preserve bone and muscle mass in rats during complete unloading, analogous to microgravity during spaceflight. So, we hypothesized that a moderate daily dose would help mitigate muscle deconditioning in a Mars gravity analogue, too."

Mars rats

To mimic Mars gravity, the researchers used an approach first developed in mice by Mary Bouxsein, PhD, also at Beth Israel Deaconess, in which rats were fitted with a full-body harness and suspended by a chain from their cage ceiling.

Thus, 24 male rats were exposed to normal loading (Earth) or 40% loading (Mars) for 14 days. In each group, half received resveratrol (150 mg/kg/day) in water; the others got just the water. Otherwise, they fed freely from the same chow.

Calf circumference and front and rear paw grip force were measured weekly, and at 14 days the calf muscles were analyzed.

Resveratrol to the rescue

The results were impressive.

As expected, the 'Mars' condition weakened the rats' grip and shrank their calf circumference, muscle weight and slow-twitch fiber content.

But incredibly, resveratrol supplementation almost entirely rescued front and rear paw grip in the Mars rats, to the level of the non-supplemented Earth rats.

What's more, resveratrol completely protected muscle mass (soleus and gastrocnemius) in the Mars rats, and in particular reduced the loss of slow-twitch muscle fibers. The protection was not complete, though: the supplement did not entirely rescue average soleus and gastrocnemius fibers cross-sectional area, or calf circumference.

As reported previously, resveratrol did not affect food intake or total body weight.

Perfecting the dose

Previous resveratrol research can explain these findings, says Dr. Mortreux.

"A likely factor here is insulin sensitivity.

"Resveratrol treatment promotes muscle growth in diabetic or unloaded animals, by increasing insulin sensitivity and glucose uptake in the muscle fibers. This is relevant for astronauts, who are known to develop reduced insulin sensitivity during spaceflight."

The anti-inflammatory effects of resveratrol could also help to conserve muscle and bone, and other anti-oxidant sources such as dried plums are being used to test this, adds Dr. Mortreux.

"Further studies are needed to explore the mechanisms involved, as well as the effects of different doses of resveratrol (up to 700 mg/kg/day) in both males and females. In addition, it will be important to confirm the lack of any potentially harmful interactions of resveratrol with other drugs administered to astronauts during space missions."
-end-
Please link to the original research article in your reporting: https://www.frontiersin.org/articles/10.3389/fphys.2019.00899/full

Corresponding author: Dr. Marie Mortreux, mmortreu@bidmc.harvard.edu

Frontiers is an award-winning Open Science platform and leading open-access scholarly publisher. Our mission is to make high-quality, peer-reviewed research articles rapidly and freely available to everybody in the world, thereby accelerating scientific and technological innovation, societal progress and economic growth. Frontiers received the 2014 ALPSP Gold Award for Innovation in Publishing. For more information, visit http://www.frontiersin.org and follow @Frontiersin on Twitter.

Frontiers

Related Mars Articles:

The seismicity of Mars
Fifteen months after the successful landing of the NASA InSight mission on Mars, first scientific analyses of ETH Zurich researchers and their partners reveal that the planet is seismically active.
Journey to the center of Mars
While InSight's seismometer has been patiently waiting for the next big marsquake to illuminate its interior and define its crust-mantle-core structure, two scientists, have built a new compositional model for Mars.
Getting mac and cheese to Mars
Washington State University scientists have developed a way to triple the shelf life of ready-to-eat macaroni and cheese, a development that could have benefits for everything from space travel to military use.
A material way to make Mars habitable
New research suggest that regions of the Martian surface could be made habitable with a material -- silica aerogel -- that mimics Earth's atmospheric greenhouse effect.
Life on Mars?
Researchers from Hungary have discovered embedded organic material in a Martian meteorite found in the late 1970s.
New evidence of deep groundwater on Mars
Researchers at the USC Arid Climate and Water Research Center (AWARE) have published a study that suggests deep groundwater could still be active on Mars and could originate surface streams in some near-equatorial areas on Mars.
Why we won't get to Mars without teamwork
If humanity hopes to make it to Mars anytime soon, we need to understand not just technology, but the psychological dynamic of a small group of astronauts trapped in a confined space for months with no escape, according to a paper published in American Psychologist, the flagship journal of the American Psychological Association.
Mars: Not as dry as it seems
Two new Oxford University papers have shed light on why there is no life on Mars.
More evidence of water on Mars
River deposits exist across the surface of Mars and record a surface environment from over 3.5 billion years ago that was able to support liquid water at the surface.
How hard did it rain on Mars?
Heavy rain on Mars reshaped the planet's impact craters and carved out river-like channels in its surface billions of years ago, according to a new study published in Icarus.
More Mars News and Mars Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.