Nav: Home

Improving the signal-to-noise ratio in quantum chromodynamics simulations

July 18, 2019

Over the last few decades, the exponential increase in computer power and accompanying increase in the quality of algorithms has enabled theoretical and particle physicists to perform more complex and precise simulations of fundamental particles and their interactions. If you increase the number of lattice points in a simulation, it becomes harder to tell the difference between the observed result of the simulation and the surrounding noise. A new study by Marco Ce, a physicist based at the Helmholtz-Institut Mainz in Germany and recently published in EPJ Plus, describes a technique for simulating particle ensembles that are 'large' (at least by the standards of particle physics). This improves the signal-to-noise ratio and thus the precision of the simulation; crucially, it also can be used to model ensembles of baryons: a category of elementary particles that includes the protons and neutrons that make up atomic nuclei.

Ce's simulations employ a Monte Carlo algorithm: a generic computational method that relies on repeated random sampling to obtain numerical results. These algorithms have a wide variety of uses, and in mathematical physics they are particularly well suited to evaluating complicated integrals, and to modelling systems with many degrees of freedom.

More precisely, the type of Monte Carlo algorithm used here involves multi-level sampling. This means that the samples are taken with different levels of accuracy, which is less computationally expensive than methods in which the sampling accuracy is uniform. Multi-level Monte Carlo methods have previously been applied to ensembles of bosons (the class of particle that, self-evidently, includes the now famous Higgs particle), but not to the more complex fermions. This latter category includes electrons as well as baryons: all the main components of 'everyday' matter.

Ce concludes his study by noting that there are many other problems in particle physics where computation is affected by high signal-to-noise ratios, and which might benefit from this approach.
-end-
Reference

M. Ce (2019), Locality and multi-level sampling with fermions, Eur. Phys. J. Plus 134:299, DOI 10.1140/epjp/i2019-12655-5

Contact:

Sabine Lehr
Springer Physics Editorial
Tel: +49-6221-4487-8336
Email: sabine.lehr@springer.com

Springer

Related Particle Physics Articles:

New theoretical framework for improved particle accelerators
Article describes new theoretical framework for next-generation particle accelerators.
Laser R&D focuses on next-gen particle collider
A set of new laser systems and proposed upgrades at Berkeley Lab's BELLA Center will propel long-term plans for a more compact and affordable ultrahigh-energy particle collider.
'Higgs hunter' Sally Dawson receives J.J. Sakurai Prize for Theoretical Particle Physics
Sally Dawson, a theoretical physicist at the US Department of Energy's Brookhaven National Laboratory, has been named a recipient of the 2017 J.J.
The incredible shrinking particle accelerator
A new data analysis/visualization toolkit developed at Lawrence Berkeley National Laboratory is designed to help speed particle accelerator research and design by enabling in situ visualization and analysis of accelerator simulations at scale.
America and Australia form new partnership in particle physics research
Fermilab, the USA's major high energy physics laboratory, CoEPP, Australia's primary center for particle physics research and the University of Melbourne have forged a new research partnership.
More Particle Physics News and Particle Physics Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...