Identification of autophagy gene regulation mechanism related to dementia and Lou Gehrig's disease
July 18, 2019Korea Brain Research Institute (KBRI, President Seo Pan-ghill) announced on July 10 that the international joint research team where Senior Researcher Jeong Yoon-ha and John Hopkins School of Medicine collaborated, found that 'cell autophagy* gene' called ATG7 is related to the onset of frontotemporal dementia and Lou Gehrig's disease.
- Autophagy: It refers to the phenomenon where a cell discomposes and recycles unnecessary organelles or components. It can be regarded as the self-cleaning taking place within the cell.
- The research outcome was published in the July issue of 'Autophagy', which is an international journal and the name of the paper and authors are as follows.
- Paper: Upregulation of ATG7 Attenuates Motor Neuron Dysfunction Associated with Depletion of TARDBP/TDP-43
- Author: Aneesh Donde*, Mingkuan Sun*, Yun Ha Jeong* (co-first author), Xinrui Wen, Jonathan Ling, Sophie Lin, Kerstin Braunstein, Shuke Nie, Sheng Wang, Liam Chen and Philip C. Wong (corresponding author)
- The research team found that when the genes are manipulated to make sure that a certain protein called TDP-43* is not created in mice and fruit flies, then the activity of gene ATG7, which is essential for cell autophagy, was inhibited and neuronal degeneration occurred.
- It is a transcriptional regulation protein and it is known as the major pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD).
- ATG7: Essential gene for autophagy
- On the contrary, when the gene is manipulated to increase the ATG7 gene expression for activation of autophagy in fruit flies, for which the TBPH* gene expression is inhibited, it is found that neurodegenerative and ataxia symptoms were improved.
- TBPH: Gene of fruit flies that is equivalent to TDP-43 present in humans
- The result of this study is meaningful in that the study confirmed the fact that TDP-43 protein regulates the activation of ATG7, which is responsible for the autophagy of neurons as well as the specific process of neuronal degeneration at the gene level.
- Cells improve the activity of overall cells by consuming damaged or old organelles or some structures (This is what we call autophagy). If the activity of gene ATG7, which is key to this process, is reduced, then the damaged and old organelles still remain, causing problems in the muscle cells and neurons.
- Dr. Jeong Yoon-ha of the KBRI expected that "this research would contribute towards the development of a new treatment for neuro-degenerative diseases, aiming to activate the autophagy function of cell".
- The result of this study is meaningful in that the study confirmed the fact that TDP-43 protein regulates the activation of ATG7, which is responsible for the autophagy of neurons as well as the specific process of neuronal degeneration at the gene level.
-end-
Korea Brain Research Institute
Related Autophagy Articles from Brightsurf:
Surprising insights into the role of autophagy in neuron
Autophagy protects our neurons in the brain, but for entirely different reasons than previously assumed, as researchers from the Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Charité in Berlin have shown.
Revealing the identity of the last unknown protein of autophagy
Japanese scientists discovered that Atg9, one of the proteins that function to mediate autophagy, has phospholipid-translocation activity (the lipid scramblase activity) between the two layers of the lipid bilayer?and elucidated that the protein's activity brings about autophagosome membrane expansion.
Lipids, lysosomes, and autophagy: The keys to preventing kidney injury
Lysosomes are cellular waste disposal organelles containing potent enzymes that cause cellular damage if they leak out of ruptured lysosomes.
How zika virus degrades essential protein for neurological development via autophagy
Researchers at the University of Maryland (UMD) shed new light on how Zika virus hijacks our own cellular machinery to break down an essential protein for neurological development, getting it to ''eat itself''.
Autophagy: the beginning of the end
Autophagy, from the Greek for 'self-eating', is an essential process that isolates and recycles cellular components under conditions of stress or when resources are limited.
Cellular cleanup! Atg40 folds the endoplasmic reticulum to facilitate its autophagy
Scientists at Tokyo Institute of Technology (Tokyo Tech) and Institute of Microbial Chemistry investigated 'ER-phagy,' the degradation mechanism of the endoplasmic reticulum (ER), an important organelle with multiple biologically necessary functions like the synthesis of proteins and lipids.
How cells decide the way they want to recycle their content
Researchers from Tokyo Medical and Dental University (TMDU) identified a new phosphorylation site of Ulk1 as a novel regulating mechanism of alternative autophagy.
Autophagy: Scientists discover novel role for self-recycling process in the brain
Proteins classically associated with autophagy regulate the speed of intracellular transport.
Insights into the diagnosis and treatment brain cancer in children
In a recent study published in Autophagy, researchers at Kanazawa University show how abnormalities in a gene called TPR can lead to pediatric brain cancer.
Autophagy degrades liquid droplets, but not aggregates, of proteins
Autophagy is a mechanism through which cellular protein is degraded.
Read More: Autophagy News and Autophagy Current Events
Autophagy protects our neurons in the brain, but for entirely different reasons than previously assumed, as researchers from the Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Charité in Berlin have shown.
Revealing the identity of the last unknown protein of autophagy
Japanese scientists discovered that Atg9, one of the proteins that function to mediate autophagy, has phospholipid-translocation activity (the lipid scramblase activity) between the two layers of the lipid bilayer?and elucidated that the protein's activity brings about autophagosome membrane expansion.
Lipids, lysosomes, and autophagy: The keys to preventing kidney injury
Lysosomes are cellular waste disposal organelles containing potent enzymes that cause cellular damage if they leak out of ruptured lysosomes.
How zika virus degrades essential protein for neurological development via autophagy
Researchers at the University of Maryland (UMD) shed new light on how Zika virus hijacks our own cellular machinery to break down an essential protein for neurological development, getting it to ''eat itself''.
Autophagy: the beginning of the end
Autophagy, from the Greek for 'self-eating', is an essential process that isolates and recycles cellular components under conditions of stress or when resources are limited.
Cellular cleanup! Atg40 folds the endoplasmic reticulum to facilitate its autophagy
Scientists at Tokyo Institute of Technology (Tokyo Tech) and Institute of Microbial Chemistry investigated 'ER-phagy,' the degradation mechanism of the endoplasmic reticulum (ER), an important organelle with multiple biologically necessary functions like the synthesis of proteins and lipids.
How cells decide the way they want to recycle their content
Researchers from Tokyo Medical and Dental University (TMDU) identified a new phosphorylation site of Ulk1 as a novel regulating mechanism of alternative autophagy.
Autophagy: Scientists discover novel role for self-recycling process in the brain
Proteins classically associated with autophagy regulate the speed of intracellular transport.
Insights into the diagnosis and treatment brain cancer in children
In a recent study published in Autophagy, researchers at Kanazawa University show how abnormalities in a gene called TPR can lead to pediatric brain cancer.
Autophagy degrades liquid droplets, but not aggregates, of proteins
Autophagy is a mechanism through which cellular protein is degraded.
Read More: Autophagy News and Autophagy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.