Nav: Home

Survival of the zebrafish: Mate, or flee?

July 18, 2019

When making decisions that are important to the species' survival, zebrafish choose mating over fleeing from a threat. This decision, different compared to that of some other species, appears to be controlled by specific brain regions that respond to pheromone cues.

These findings by scientists at Harvard University and Novartis Institutes of BioMedical Research (NIBR) illuminate an aspect of basic biology that will be important as researchers use zebrafish to model neurological diseases that affect social behavior, such as autism and schizophrenia. The study is published in Current Biology.

"Animals and people make behavioral decisions, ones controlled by environmental challenges and modulated by their internal drives, but little is known about the biology of these choices," said Mark Fishman, M.D., Harvard professor of stem cell and regenerative biology and senior author of the study. "We looked at a critical decision for the survival of the species in zebrafish, giving them the choice between mating and fleeing a threat."

Wired for survival

To simulate a threat, the researchers used "skin extract," a complicated mixture of pheromones that is released when a zebrafish is injured. When exposed to the substance, zebrafish usually show a strong alarm reponse, swimming quickly near the bottom of the tank and then freezing.

But when the zebrafish were mating, they ignored the threat. Moreover, they did not need to be mating to ignore the threat -- being exposed to "mating water" that was previously conditioned by mating zebrafish was enough. This indicated to the researchers that the behavior was due to reproductive pheromones released in the water.

Digging deeper, the researchers used live imaging to identify specific brain regions that were activated by the mating and threat stimuli.

"When we presented both stimuli at the same time and looked at the brain, by and large we saw a response to just the reproductive stimulus, not the fear-inducing stimulus. And even further, the areas that were previously activated by the fear-inducing stimulus were now being suppressed," said Gerald Sun, Ph.D., former NIBR postdoctoral scholar and co-lead author of the study.

An unexpected response

The zebrafish's choice to continue mating in the face of a threat is the opposite of many other animals, including humans.

"The fish completely disregarded what is normally a very noxious, fearful stimulus, and that was really unexpected," Sun said. "One potential explanation for why zebrafish have adopted this strategy is that they lay eggs that are externally fertilized. Humans and live-bearing fish make the opposite decision to flee a threat, because they need to survive for the next generation to be propagated."

A model to study behavioral decisions

With a better understanding of zebrafish biology, researchers can use the animal model to study social and other behaviors.

"It's important to establish what are the normal behaviors of zebrafish. Then you can study zebrafish as a model for diseases that affect social behavior, like autism and schizophrenia," said Carmen Diaz-Verdugo, NIBR postdoctoral scholar and co-lead author of the study. "Once you define a well-established behavior and know the brain area responsible for it, then you can create genetic models that behave differently and use them for drug discovery."

Although human brains are more complex than those of zebrafish, they still have a primitive component.

"We all have certain innate responses to the world around us. One hopes that with humans, you can modulate these to a certain degree. But on the other hand, your limbic system -- your 'fish brain' -- will play a big part in how you respond in different situations," Fishman said. "We anticipate that elements of the underlying circuitry will be conserved and used for similar purposes in other species, although playing out in a species-specific manner."
-end-


Harvard University

Related Brain Articles:

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.
Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.
An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.
Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.