Nav: Home

Discovery shows how difficult-to-treat prostate cancer evades immune system

July 18, 2019

Researchers at The University of Texas MD Anderson Cancer Center have discovered how an aggressive form of prostate cancer called double-negative prostate cancer (DNPC) metastasizes by evading the immune system. The investigators also reported on the pre-clinical development of a new therapy, which, when given in combination with existing immunotherapies, appears to stop and even reverse metastasis in mouse models.

DNPC is difficult to treat and frequently arises in patients previously treated with therapies that inhibit androgen receptors (AR), known to spur prostate cancer cells growth. Study findings were published in the July 18 online issue of Cancer Cell.

Filippo Giancotti, M.D., Ph.D., professor of Cancer Biology, reported that an epigenetic regulator known as the polycomb repressor complex 1 (PRC1) coordinates the initiation of metastasis by increasing the regenerative capacity of metastatic cells and by suppressing the immune system and spurring tumor blood vessel growth or angiogenesis.

"The findings open up potential new approaches to treating DNPC, which has been recognized recently as a new subtype that emerges at least in part in response to treatment with next-generation AR inhibitors," said Giancotti, "We showed that PRC1 plays a role with immunosuppression at metastatic sites in DNPC, and we developed a novel in-class inhibitor of PRC1. This inhibitor exhibited efficacy as a single treatment and cooperated with double checkpoint immunotherapy to completely suppress metastasis in pre-clinical DNPC models."

Through in vivo genetic screening, the team identified a cytokine called CCL2 as the major pro-metastatic gene induced by PRC1. CCL2 binds to a tumor cell receptor called CCR4 to boost regenerative capacity and to CCR2 in immune cells, creating an immunosuppressive microenvironment and boosting tumor blood vessel growth.

"CCL2 also attracts tumor-associated macrophages (TAMS) and regulatory T cells (Tregs), which suppresses the immune system and stimulates angiogenesis," said Giancotti. "Our study showed that targeting PRC1 inhibits recruitment of TAMS and Tregs, suppressing tumor metastasis."

Giancotti's team combined PRC1 with two types of immunotherapy agents, which attracted important immune cells called CD4 and CD8 T cells, resulting in "maximal induction" of tumor cell death in mice.

"This indicates that the inhibiting TAMS and Tregs with PRC1 inhibitors enables double checkpoint therapy to not only recruit but also to activate T cells, thus causing metastasis regression," said Giancotti.
-end-
The study was funded by the National Institutes of Health (R35 CA197566, P01 CA094060, P30 CA016672, P50 CA92629, and P30 CA008748); the Cancer Prevention and Research Institute of Texas (RR160031); and the MD Anderson Moon Shots Program®, a collaborative effort to accelerate the development of scientific discoveries into clinical advances that save patients' lives. Giancotti serves as co-leader of MD Anderson's Prostate Cancer Moon Shot®. There are no disclosures.

MD Anderson research team members included HyunHo Han, Ph.D.; Yan Wang, Ph.D.; Boyu Zhang, Ph.D.; Alekya Rumandla; and Sreeharsha Gurrapu, Ph.D., all of the Department of Cancer Biology; and Xin Liang, M.D.; and Guocan Wang, M.D., Ph.D., of the Department of Genitourinary Medical Oncology. Former members of the Giancotti laboratory included Wengjin Su, Ph.D., who served as first author of the Cancer Cell paper; and Guotam Chakraborty, Ph.D.

University of Texas M. D. Anderson Cancer Center

Related Immune System Articles:

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.