Nav: Home

Discovery shows how difficult-to-treat prostate cancer evades immune system

July 18, 2019

Researchers at The University of Texas MD Anderson Cancer Center have discovered how an aggressive form of prostate cancer called double-negative prostate cancer (DNPC) metastasizes by evading the immune system. The investigators also reported on the pre-clinical development of a new therapy, which, when given in combination with existing immunotherapies, appears to stop and even reverse metastasis in mouse models.

DNPC is difficult to treat and frequently arises in patients previously treated with therapies that inhibit androgen receptors (AR), known to spur prostate cancer cells growth. Study findings were published in the July 18 online issue of Cancer Cell.

Filippo Giancotti, M.D., Ph.D., professor of Cancer Biology, reported that an epigenetic regulator known as the polycomb repressor complex 1 (PRC1) coordinates the initiation of metastasis by increasing the regenerative capacity of metastatic cells and by suppressing the immune system and spurring tumor blood vessel growth or angiogenesis.

"The findings open up potential new approaches to treating DNPC, which has been recognized recently as a new subtype that emerges at least in part in response to treatment with next-generation AR inhibitors," said Giancotti, "We showed that PRC1 plays a role with immunosuppression at metastatic sites in DNPC, and we developed a novel in-class inhibitor of PRC1. This inhibitor exhibited efficacy as a single treatment and cooperated with double checkpoint immunotherapy to completely suppress metastasis in pre-clinical DNPC models."

Through in vivo genetic screening, the team identified a cytokine called CCL2 as the major pro-metastatic gene induced by PRC1. CCL2 binds to a tumor cell receptor called CCR4 to boost regenerative capacity and to CCR2 in immune cells, creating an immunosuppressive microenvironment and boosting tumor blood vessel growth.

"CCL2 also attracts tumor-associated macrophages (TAMS) and regulatory T cells (Tregs), which suppresses the immune system and stimulates angiogenesis," said Giancotti. "Our study showed that targeting PRC1 inhibits recruitment of TAMS and Tregs, suppressing tumor metastasis."

Giancotti's team combined PRC1 with two types of immunotherapy agents, which attracted important immune cells called CD4 and CD8 T cells, resulting in "maximal induction" of tumor cell death in mice.

"This indicates that the inhibiting TAMS and Tregs with PRC1 inhibitors enables double checkpoint therapy to not only recruit but also to activate T cells, thus causing metastasis regression," said Giancotti.
-end-
The study was funded by the National Institutes of Health (R35 CA197566, P01 CA094060, P30 CA016672, P50 CA92629, and P30 CA008748); the Cancer Prevention and Research Institute of Texas (RR160031); and the MD Anderson Moon Shots Program®, a collaborative effort to accelerate the development of scientific discoveries into clinical advances that save patients' lives. Giancotti serves as co-leader of MD Anderson's Prostate Cancer Moon Shot®. There are no disclosures.

MD Anderson research team members included HyunHo Han, Ph.D.; Yan Wang, Ph.D.; Boyu Zhang, Ph.D.; Alekya Rumandla; and Sreeharsha Gurrapu, Ph.D., all of the Department of Cancer Biology; and Xin Liang, M.D.; and Guocan Wang, M.D., Ph.D., of the Department of Genitourinary Medical Oncology. Former members of the Giancotti laboratory included Wengjin Su, Ph.D., who served as first author of the Cancer Cell paper; and Guotam Chakraborty, Ph.D.

University of Texas M. D. Anderson Cancer Center

Related Immune System Articles:

The immune system may explain skepticism towards immigrants
There is a strong correlation between our fear of infection and our skepticism towards immigrants.
New insights on how pathogens escape the immune system
The bacterium Salmonella enterica causes gastroenteritis in humans and is one of the leading causes of food-borne infectious diseases.
Understanding how HIV evades the immune system
Monash University (Australia) and Cardiff University (UK) researchers have come a step further in understanding how the human immunodeficiency virus (HIV) evades the immune system.
Carbs during workouts help immune system recovery
Eating carbohydrates during intense exercise helps to minimise exercise-induced immune disturbances and can aid the body's recovery, QUT research has found.
A new model for activation of the immune system
By studying a large protein (the C1 protein) with X-rays and electron microscopy, researchers from Aarhus University in Denmark have established a new model for how an important part of the innate immune system is activated.
Guards of the human immune system unraveled
Dendritic cells represent an important component of the immune system: they recognize and engulf invaders, which subsequently triggers a pathogen-specific immune response.
How our immune system targets TB
Researchers have seen, for the very first time, how the human immune system recognizes tuberculosis (TB).
How a fungus inhibits the immune system of plants
A newly discovered protein from a fungus is able to suppress the innate immune system of plants.
A new view of the immune system
Pathogen epitopes are fragments of bacterial or viral proteins. Nearly a third of all existing human epitopes consist of two different fragments.
TB tricks the body's immune system to allow it to spread
Tuberculosis tricks the immune system into attacking the body's lung tissue so the bacteria are allowed to spread to other people, new research from the University of Southampton suggests.

Related Immune System Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.