Nav: Home

New low-cost thermoelectric material works at room temperature

July 18, 2019

Has your steering wheel been too hot to touch this summer? A new thermoelectric material reported in the journal Science could offer relief.

The widespread adoption of thermoelectric devices that can directly convert electricity into thermal energy for cooling and heating has been hindered, in part, by the lack of materials that are both inexpensive and highly efficient at room temperature.

Now researchers from the University of Houston and the Massachusetts Institute of Technology have reported the discovery of a new material that works efficiently at room temperature while requiring almost no costly tellurium, a major component of the current state-of-the-art material.

The work, described in a paper published online by Science Thursday, July 18, has potential applications for keeping electronic devices, vehicles and other components from overheating, said Zhifeng Ren, corresponding author on the work and director of the Texas Center for Superconductivity at UH, where he is also M.D. Anderson Professor of Physics.

"We have produced a new material, which is inexpensive but still performs almost as well as the traditional, more expensive material," Ren said. The researchers say future work could close the slight performance gap between their new material and the traditional material, a bismuth-tellurium based alloy.

Thermoelectric materials work by exploiting the flow of heat current from a warmer area to a cooler area, and thermoelectric cooling modules operate according to the Peltier effect, which describes the transfer of heat between two electrical junctions.

Thermoelectric materials can also be used to turn waste heat - from power plants, automobile tailpipes and other sources - into electricity, and a number of new materials have been reported for that application, which requires materials to perform at far higher temperatures.

Thermoelectric cooling modules have posed a great challenge because they have to work at cooler temperatures, where the thermoelectric figure-of-merit, or ZT, is low because it is dependent on temperature. The figure-of-merit is a metric used to determine how efficiently a thermoelectric material works.

Despite the challenge, thermoelectric cooling modules also, at least for now, offer more commercial potential, in part because they can operate for a long lifespan at cooler temperatures; thermoelectric power generation is complicated by issues related to the high temperatures at which it operates, including oxidation and thermal instability.

The market for thermoelectric cooling is growing. "The global thermoelectric module market was worth ~0.6 billion US dollars in 2018 and it is anticipated to reach ~1.7 billion US dollars by 2027," the researchers wrote.

Bismuth-tellurium alloys have been considered the best-performing material for thermal cooling for decades, but the researchers said the high cost of tellurium has limited widespread use. Jun Mao, a post-doctoral researcher at UH and first author on the paper, said the cost has recently dropped but remains about $50/kilogram. That compares to about $6/kilogram for magnesium, a primary component of the new material.

In addition to Ren and Mao, additional authors on the paper include Hangtian Zhu, Zihang Liu and Geethal Amila Gamage, all of the UH Department of Physics and TcSUH, and Zhiwei Ding and Gang Chen of the Department of Mechanical Engineering at the Massachusetts Institute of Technology.

They reported that the new material, comprised of magnesium and bismuth and created in a form carrying a negative charge, known as n-type, was almost as efficient as the traditional bismuth-tellurium material. That, combined with the lower cost, should expand the use of thermoelectric modules for cooling, they said.

To produce a thermoelectric module using the new material, researchers combined it with a positive-charge carrying, or p-type, version of the traditional bismuth-tellurium alloy. Mao said that allowed them to use just half as much tellurium as most current modules.

Because the cost of materials accounts for about one-third of the cost of the device, that savings adds up, he said.

The new material also more successfully maintains electrical contact than most nanostructured materials, the researchers reported.
-end-


University of Houston

Related Temperature Articles:

Thermal siphon effect: heat flows from low temperature to high temperature
In this work, researchers study (both thermal and electric) energy transport in physical networks that rewired from 2D regular lattices.
Despite temperature shifts, treehoppers manage to mate
A rare bright spot among dismal climate change predictions, new research findings show that some singing insects are likely to manage to reproduce even in the midst of potentially disruptive temperature changes.
Precise temperature measurements with invisible light
NIST researchers have invented a portable, remarkably stable thermometer capable of measuring temperatures to a precision of within a few thousandths of a degree Celsius.
The mechanism of high-temperature superconductivity is found
Russian physicist Viktor Lakhno from Keldysh Institute of Applied Mathematics, RAS considers symmetrical bipolarons as a basis of high-temperature superconductivity.
Scientists identify how plants sense temperature
A UC Riverside researcher is leading a team exploring how plants respond to temperature.
Responses of benthic foraminifera to changes of temperature and salinity
Benthic foraminifera is numerous single-celled protozoan species that showed high sensitivity to environmental changes.
High-temperature electronics? That's hot
A new organic polymer blend allows plastic electronics to function in high temperatures without sacrificing performance.
How to melt gold at room temperature
When the tension rises, unexpected things can happen -- not least when it comes to gold atoms.
Body temperature regulation: how fever comes
Researchers from Kanazawa University report in Journal of Neuroscience performed a microdialysis study on mice to determine mechanisms underlying the inflammatory response in the brain associated with fever that might be used to develop new strategies for treatment.
A micro-thermometer to record tiny temperature changes
Scientists at Tokyo Institute of Technology (Tokyo Tech) and their collaborators have developed a micrometer-wide thermometer that is sensitive to heat generated by optical and electron beams, and can measure small and rapid temperature changes in real time.
More Temperature News and Temperature Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab