Human intelligence determined by volume and location of gray matter tissue in brain

July 19, 2004

Irvine, Calif., July 19, 2004 — General human intelligence appears to be based on the volume of gray matter tissue in certain regions of the brain, UC Irvine College of Medicine researchers have found in the most comprehensive structural brain-scan study of intelligence to date.

The study also discovered that because these regions related to intelligence are located throughout the brain, a single "intelligence center," such as the frontal lobe, is unlikely.

Dr. Richard Haier, professor of psychology in the Department of Pediatrics and long-time human intelligence researcher, and colleagues at UCI and the University of New Mexico used MRI to obtain structural images of the brain in 47 normal adults who also took standard intelligence quotient tests. The researchers used a technique called voxel-based morphometry to determine gray matter volume throughout the brain which they correlated to IQ scores. Study results appear on the online version of NeuroImage.

Previous research had shown that larger brains are weakly related to higher IQ, but this study is the first to demonstrate that gray matter in specific regions in the brain is more related to IQ than is overall size. Multiple brain areas are related to IQ, the UCI and UNM researchers have found, and various combinations of these areas can similarly account for IQ scores. Therefore, it is likely that a person's mental strengths and weaknesses depend in large part on the individual pattern of gray matter across his or her brain.

"This may be why one person is quite good at mathematics and not so good at spelling, and another person, with the same IQ, has the opposite pattern of abilities," Haier said.

While gray matter amounts are vital to intelligence levels, the researchers were surprised to find that only about 6 percent of all the gray matter in the brain appears related to IQ.

"There is a constant cascade of information being processed in the entire brain, but intelligence seems related to an efficient use of relatively few structures, where the more gray matter the better," Haier said. "In addition, these structures that are important for intelligence are also implicated in memory, attention and language."

The findings also suggest that the brain areas where gray matter is related to IQ show some differences between young-adult and middle-aged subjects. In middle age, more of the frontal and parietal lobes are related to IQ; less frontal and more temporal areas are related to IQ in the younger adults.

The research does not address why some people have more gray matter in some brain areas than other people, although previous research has shown the regional distribution of gray matter in humans is highly heritable. Haier and his colleagues are currently evaluating the MRI data to see if there are gender differences in IQ patterns.
-end-
Haier's colleagues in the study include Dr. Michael T. Alkire and Kevin Head of UCI and Drs. Rex E. Jung and Ronald A. Yeo of the University of New Mexico. The National Institute of Child Health and Human Development supported the study.

About the University of California, Irvine: The University of California, Irvine is a top-ranked public university dedicated to research, scholarship and community. Founded in 1965, UCI is among the fastest-growing University of California campuses, with approximately 24,000 undergraduate and graduate students and about 1,300 faculty members. The third-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3 billion.

A complete archive of press releases is available on the World Wide Web at www.today.uci.edu.

Note to editors: An image is available at http://today.uci.edu/news/release_detail.asp?key=1187

University of California - Irvine

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.