Songbirds escaped from Australasia, conquered rest of world

July 19, 2004

MINNEAPOLIS / ST. PAUL—That cardinal singing his heart out in your backyard has ancestors that left the neighborhood of Australia 45 million years ago. A comprehensive study of DNA from songbirds and their relatives shows that these birds, which account for almost half of all bird species, did not originate in Eurasia, as previously thought. Instead, their ancestors escaped from a relatively small area--Australasia (Australia, New Zealand and nearby islands) and New Guinea--about 45 million years ago and went on to populate every other continent save Antarctica. The study, led by Keith Barker of the University of Minnesota's Bell Museum of Natural History, will be published online this week in the journal Proceedings of the National Academy of Sciences.

The birds in question belong to the group called Passeriformes, or perching birds. It includes all songbirds, such as robins, cardinals, blackbirds, house sparrows, house finches and crows. The group is further divided into birds that must learn their songs "true songbirds") and those with the innate ability to sing the "correct" song. True songbirds account for 4,580 of the 6,000 known Passeriformes species. (There is a total of 9,702 known species of birds.) The true songbirds are currently divided into two groups: Passerida (3,477 species, among them many familiar backyard species) and Corvida (1,103 species, including crows and ravens).

The two groups of true songbirds were thought to have separate origins. The Corvida originated in Australasia, but the Passerida were thought to have arisen separately, in Eurasia. The Passerida then supposedly spread from Eurasia to Africa, Australasia and the New World. But in examining the DNA sequences of two genes in all but one family (a closely related group, such as "crows and jays" or "warblers") of passerine birds, Barker and his colleagues made a startling discovery.

"It was thought that the Passerida arose in Eurasia about 40 million years ago," said Barker. "But we found that these birds fall into a group within the Corvida. That means all songbirds trace their origins to Australasia and New Guinea."

The Passerida differ from the Corvida because the Passerida somehow made it out of Australasia and New Guinea and onto the Asian mainland long before the Corvida, Barker said. Asia and Australasia are carried on separate plates in the Earth's crust, and for many millions of years those plates were far apart. Around 45 million years ago, the ancestors of the Passerida dispersed to Asia--over more than 600 miles of open ocean--long before these two plates approached one another. For some reason, however, ancestors of the Corvida didn't make it until about 25 million years later, or 20 million years before today. At that time, Asia and Australia were much closer to each other, and island chains that could have allowed the Corvida ancestors to "island hop" to the mainland appeared, Barker said.

"There are many endemic Corvida birds on the Indonesian island of Lombok but very few on Bali, the next island to the west," said Barker. "And, sure enough, the line separating the Asian plate from the Australasian plate runs between Bali and Lombok."
-end-
Working with Barker were colleagues from the Natural History Museum of Geneva, Switzerland; and the American Museum of Natural History in New York. The study was funded by the Chapman Fund of the American Museum of Natural History and the National Science Foundation (NSF). Barker and Scott Lanyon, director of the University of Minnesota Bell Museum, are currently working with NSF support on a study of cardinals and their relatives, which include tanagers, blackbirds, warblers and New World sparrows.

University of Minnesota

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.