Microreactor efficiently regenerates cofactors for biocatalysis

July 19, 2005

CHAMPAIGN, Ill. -- One of the longstanding challenges in the synthesis of pharmaceuticals, cosmetics and food additives is the continuous regeneration of molecules called cofactors that permit the synthesis through inexpensive and environmentally friendly biocatalytic processes.

Now, a team of researchers from the University of Illinois at Urbana-Champaign and the Universite Paul Sabatier in Toulouse, France, has developed a microreactor that efficiently regenerates cofactors through enzyme-catalyzed reactions.

"Enzymes are nature's catalysts, but in some cases, enzymes can not prompt a speedy chemical reaction," said Paul Kenis, a professor of chemical and biomolecular engineering at Illinois and a researcher at the Beckman Institute for Advanced Science and Technology. "In those cases, one or more cofactors are required."

By continuously regenerating the required cofactors, the microreactor enables the desired biocatalytic processes. Kenis and his colleagues describe their work in a paper that has been accepted for publication in the Journal of the American Chemical Society, and posted on its Web site.

The microreactor uses a Y-shaped microfluidic channel in which two liquid streams (a reactant stream and a buffer stream) merge and flow laminarly between two electrodes without mixing. By adjusting the flow rates of the two streams, the researchers can focus the reactant stream close to the cathode, and a normally unfavorable reaction equilibrium is driven into the desired direction of cofactor regeneration.

"In large batch reactors, a spontaneous reverse reaction prevents the regeneration of essential cofactors," Kenis said. "The absence of a bulk phase in our microreactor prevents the unwanted reverse reaction from occurring, while permitting continuous operation."

Using their microreactor, the researchers performed a model biocatalytic process by converting an achiral substrate (pyruvate) into a chiral product (L-lactate), using lactate dehydrogenase as the enzyme.

While further research is needed to improve the performance of individual microreactors, the present work shifts the emphasis from the longstanding problem of cofactor regeneration to a more tangible engineering challenge, Kenis said. "Now we need to integrate a large number of these microreactors in a recirculating system to enable the biocatalytic synthesis of chiral fine chemicals in larger quantities."
Collaborators included electrochemical engineering professor Theodore Tzedakis and graduate student Cheikhou Kane at the Universite Paul Sabatier and graduate students Eric Choban and Seong Kee Yoon at Illinois. Funding was provided by the University of Illinois and the National Center for Scientific Research in France (CNRS), as well as a formal exchange program between these two institutions.

Editor's note: To reach Paul Kenis, call 217-265-0523; e-mail: kenis@uiuc.edu.

University of Illinois at Urbana-Champaign

Related Regeneration Articles from Brightsurf:

Protein influences regeneration of vascular cells
Through their basic research, physicians at the Heart Center of the University Hospital Bonn have discovered how the communication between individual cells can be influenced with the help of a specific protein.

How airway cells work together in regeneration and aging
Researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA have identified the process by which stem cells in the airways of the lungs switch between two distinct phases -- creating more of themselves and producing mature airway cells -- to regenerate lung tissue after an injury.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Sensing infection, suppressing regeneration
UIC researchers describe an enzyme that blocks the ability of blood vessel cells to self-heal.

Adult fly intestine could help understand intestinal regeneration
Intestinal epithelial cells (IECs) are exposed to diverse types of environmental stresses such as bacteria and toxins, but the mechanisms by which epithelial cells sense stress are not well understood.

Fish reveal limb-regeneration secrets
What can fish teach scientists about limb regeneration? Quite a bit, as it turns out.

The regeneration of a cell depends on where it is positioned
Researchers at the Nara Institute of Science and Technology (NAIST) report a new single-cell RNA sequencing technology, single cell-digital gene expression, which can measure the transcriptome while preserving the positional information of the cell in the tissue.

The genetics of regeneration
Led by Assistant Professor of Organismic and Evolutionary Biology Mansi Srivastava, a team of researchers is shedding new light on how animals perform whole-body regeneration, and uncovered a number of DNA switches that appear to control genes used in the process.

Blood holds key to liver regeneration
The liver is the only organ in the body that can regenerate.

Electrical signals kick off flatworm regeneration
In a study publishing March 5 in Biophysical Journal, scientists report that electrical activity is the first known step in the tissue-regeneration process of planarian flatworms, starting before the earliest known genetic machinery kicks in and setting off the downstream activities of gene transcription needed to construct new heads or tails.

Read More: Regeneration News and Regeneration Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.