Mapping out pathways to better soybeans

July 19, 2010

Agricultural Research Service (ARS) scientists are a step closer to unlocking genetic clues that may lead to packing more protein and oil into soybeans, a move that would boost their value and help U.S. growers compete in international markets.

ARS researchers Carroll P. Vance, Yung-Tsi Bolon and Randy C. Shoemaker have narrowed down where genes that determine protein and oil content are likely to be found along the soybean genome. Vance and Bolon work in the ARS Plant Science Research Unit in St. Paul, Minn. and Shoemaker works in the ARS Corn Insects and Crop Genetics Research Unit in Ames, Iowa. The team also included Bindu Joseph, a post doctoral researcher who worked with Shoemaker and is now at the University of California-Davis.

More than half of the estimated $27 billion U.S. soybean crop is exported each year. But there is increasing competition for international markets, and low protein and oil content often deflate prices paid to U.S. growers, particularly in the Midwest.

The researchers used two different approaches to compare the genomes of two nearly identical inbred lines of soybeans that varied in seed protein and oil content, examining patterns in how thousands of genes are expressed, and sequencing 3 billion base pairs of soybean RNA.

By comparing the results, the researchers drew up a genetic map that identifies key molecular markers along a region of the soybean genome known as Linkage Group I. The widely studied region makes up less than 1 percent of the plant's overall genome, but includes 13 "candidate genes" that are likely to play a role in determining oil and protein levels, and a series of associated molecular markers, according to the scientists.

Breeders will be able to use the markers as signposts to enable the development of new soybean lines with higher protein and oil levels. The effort also uncovered evidence showing that protein levels are determined early in the seed's development.

The report, published online in the journal BMC Plant Biology, also is accompanied by vast amounts of sequencing data that scientists can access to study genes related to other desirable traits, such as drought tolerance and pest resistance.
-end-
ARS is the principal intramural scientific research agency of the U.S. Department of Agriculture (USDA). The research supports the USDA priority of promoting international food security.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write: USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice), or (202) 720-6382 (TDD).

United States Department of Agriculture - Research, Education and Economics

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.