Locating muscle proteins

July 19, 2012

Muscle contraction and many other movement processes are controlled by the interplay between myosin and actin filaments. Two further proteins, tropomyosin and troponin, regulate how myosin binds to actin. While theoretical models have in fact described exactly how these muscle proteins interact, this interaction has never previously been observed in detail. Stefan Raunser and Elmar Behrmann from the Max Planck Institute of Molecular Physiology in Dortmund have now managed to image the actin-myosin-tropomyosin complex with an unprecedented accuracy of 0.8 nanometres, which amounts to a resolution of less than one-millionth of a millimetre. This has, for the first time, made it possible to correctly identify the location of proteins within the complex and to analyse the processes involved in muscle contraction. These findings could help determine the impact of genetically determined modifications to the actin-myosin-tropomyosin complex in certain types of hereditary heart disease.

The basic functional unit of a muscle, known as the sarcomere, consists of actin, myosin and tropomyosin proteins. If a muscle is to be able to contract, the myosin must slide along filamentous actin molecules. Working together with troponin, tropomyosin regulates muscle contraction by controlling when myosin binds to actin. In the resting state, tropomyosin and troponin block the binding site for myosin on the actin filament. At this point, the myosin head is at a 90-degree position. Only after an influx of calcium, which docks onto the regulating proteins, is the binding site on the actin filament exposed. The myosin head docks onto this site, changes its conformation and bends in an articulated manner, thereby pulling the actin along with it. As the filaments slide over one another, the sarcomere shortens and the muscle thus contracts.

Scientists from the Max Planck Institute of Molecular Physiology in collaboration with scientists from Hannover Medical School, Ruhr-Universität Bochum and the University of Texas in Houston, have now, for the first time, been able to reveal the details of the interaction on which this model is based. Thanks to improved electron microscopy techniques, Stefan Raunser and his colleagues have also, for the first time, gained an accurate insight into the structural elements of muscle. "This is an important step in understanding the interplay between the individual proteins within the functional structures of muscle", says Raunser.

The scientists were able, for example, to identify the exact location of tropomyosin on the actin filament in the myosin-bound state and, with their detailed imaging of the complex's structure, showed that actin actually brings about conformational changes in myosin. Comparisons with myosin structures in other states have allowed the researchers to describe the interplay of myosin and actin during muscle contraction. "We have, so to speak, drawn a map for biochemists. Our findings will make it easier for them to understand the processes and sequences of events taking place in muscles", explains Raunser.

The findings are also highly relevant from a medical standpoint. The human heart is the body's most important muscle and, if it is working at less than its best, the outcome can be fatal. Malfunctions within the heart are often associated with point mutations. The micrographs taken by the Max Planck researchers have now made it possible to identify the exact location of these mutations for the first time. "Finding the exact location of the mutations is fundamental to developing treatments for such heart diseases", says Stefan Raunser.
-end-
Behrmann, Müller, Penczek, Mannherz, Manstein und Raunser
Structure of the Rigor Actin-Tropomyosin-Myosin Complex
Cell, 20th of July 2012

Max-Planck-Gesellschaft

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.