Nav: Home

On the path to controlled gene therapy

July 19, 2016

The ability to switch disease-causing genes on and off remains a dream for many physicians, research scientists and patients. Research teams from across the world are busy turning this dream into a reality, incuding a team of researchers from Charité - Universitätsmedizin Berlin and the Max Planck Institute for Medical Research in Heidelberg. Led by Dr. Mazahir T. Hasan, and working under the auspices of the NeuroCure Cluster of Excellence, the team has successfully programmed a virus to transport the necessary genetic material to affected tissue and nerve cells inside the body. A report on their new virus-based method, which delivers instructions to the host genome without becoming part of it, has been published in the journal Molecular Therapy Nucleic Acids*.

From cancer to Alzheimer's disease, many life-threatening diseases can only be treated using drug-based treatment options, if at all. Many of these treatments are non-specific in nature, or even ineffective. In some cases, the undesirable side-effects may even outweigh the desirable ones. This is because indiscriminate treatments damage healthy cells, impairing their ability to communicate with other cells; as a result, it is hoped that genetically produced and modified mediators will be able to selectively target diseased cells, and improve the way treatment is delivered. "In the laboratory, we use attenuated, i.e. non-replicating,viruses that are known as recombinant adeno-associated viruses (rAAV). We use them to transport genetically encoded material into live organisms affected by disease," explains Dr. Hasan. "This approach opens up a whole range of options which, in the future, may allow us to treat and heal various diseases."

By successfully completing the initial step of testing this new method using an animal model, the researchers have laid the groundwork for future genetic treatments for use in humans. Before these can be used, however, they will need to be tested to ensure their safety. It is already known that rAAVs can transport genetically encoded material into any type of cell and tissue, including the brain, and that, once inside the cells, they are capable of repeatedly switching gene therapy applications on and off again. This on/off switch is controlled chemically, via either food intake or drinking water: "The fact that gene function can be switched on and off in this manner is of particular value, and renders the method a perfect candidate for use in controlled gene therapy," emphasizes Dr. Hasan

The fact that rAAV-infected cells do not trigger any form of measurable immune response and that their genetic material remains completely intact represents an additional benefit. While this does not mean that future gene therapy applications are guaranteed to be successful, the researchers are full of confidence for the future. "We are still at the laboratory stage," says Dr. Hasan, adding: "Once additional safety options are in place, this development could spearhead innovation, heralding in a time when the transfer of genetically encoded material will be used to heal severe diseases, including neurological ones such as Parkinson's disease, Alzheimer's disease and epilepsy."

-end-

*Godwin K Dogbevia, Martin Roβmanith, Rolf Sprengel and Mazahir T Hasan. Flexible, AAV-equipped Genetic Modules for Inducible Control of Gene Expression in Mammalian Brain. Molecular Therapy Nucleic Acids. 2016/ 5, e309. doi:10.1038/mtna.2016.23.

Contact:

Dr. Mazahir T. Hasan
NeuroCure Cluster of Excellence
Charité - Universitätsmedizin Berlin
Tel: 49-30-450-539-175
Email: mazahir.hasan@charite.de

Link:

NeuroCure http://www.neurocure.de/activities-238.html

Charité - Universitätsmedizin Berlin
New insights into how the Zika virus causes microcephaly
Scientists have uncovered why Zika virus may specifically target neural stem cells in the developing brain, potentially leading to microcephaly.
New Zika virus inhibitor identified
Compound could serve as basis for drugs to prevent neurological complications of Zika.
Zeroing in on the Zika virus
Hobman has been announced as one of three Canadian scientists who have received funding from the Canadian Institutes of Health Research (CIHR) for their teams to study the Zika virus.
What does it take for an AIDS virus to infect a person?
Researchers examined the characteristics of HIV-1 strains that were successful in traversing the genital mucosa that forms a boundary to entry by viruses and bacteria.
Cough virus kills liver cancer cells and hepatitis virus
A virus that causes childhood coughs and colds could help in the fight against primary liver cancer, according to a study.
Characterizing the Zika virus genome
The sudden emergence of the Zika virus epidemic in Latin America in 2015-16 has caught the scientific world unawares.
Discovery of new Hepatitis C virus mechanism
Researchers at Osaka University, Japan uncovered the mechanisms that suppress the propagation of the hepatitis C virus with the potential of improving pathological liver conditions.
What does Zika virus mean for the children of the Americas?
A special communication article published online by JAMA Pediatrics explores whether new paradigms in child health may emerge because of Zika virus.
Predicting the spread of the Zika virus
A new tool by Japan-based researchers predicts the risk of Zika virus importation and local transmission for 189 countries.
An old new weapon against emerging Chikungunya virus
Researchers utilize existing drugs to interfere with host factors required for replication of Chikungunya virus.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.

Now Playing: Radiolab

Truth Trolls
Today, a third story of folks relentlessly searching for the truth. But this time, the truth seekers are an unlikely bunch... internet trolls.


Now Playing: TED Radio Hour

Rethinking School
For most of modern history, humans have placed smaller humans in institutions called schools. But what parts of this model still work? And what must change? This hour, TED speakers rethink education.TED speakers include teacher Tyler DeWitt, social entrepreneur Sal Khan, international education expert Andreas Schleicher, and educator Linda Cliatt-Wayman.