Nav: Home

Mobile phone radiation may affect memory performance in adolescents

July 19, 2018

The rapid evolution of information and communication technologies (ICT) goes along with an increase in exposure to radiofrequency electromagnetic fields (RF-EMF) in our daily life. The most relevant exposure source to the brain is the use of a mobile phone close to the head. Several studies have been conducted to identify potential health effects related to RF-EMF, though results have remained inconclusive.

The research conducted by scientists at the Swiss Tropical and Public Health Institute (Swiss TPH) looked at the relationship between exposure to RF-EMF from wireless communication devices and memory performance in adolescents. The study follows up a report published in the scientific journal Environment International in 2015 with twice the sample size and more recent information on the absorption of RF-EMF in adolescents' brains during different types of wireless communication device use. These are the world's first epidemiological studies to estimate cumulative RF-EMF brain dose in adolescents.

Media usage and brain exposure in young adults

The study to be published on 19 July 2018 found that cumulative RF-EMF brain exposure from mobile phone use over one year may have a negative effect on the development of figural memory performance in adolescents, confirming prior results published in 2015. Figural memory is mainly located in the right brain hemisphere and association with RF-EMF was more pronounced in adolescents using the mobile phone on the right side of the head. "This may suggest that indeed RF-EMF absorbed by the brain is responsible for the observed associations." said Martin Röösli, Head of Environmental Exposures and Health at Swiss TPH.

Other aspects of wireless communication use, such as sending text messages, playing games or browsing the Internet cause only marginal RF-EMF exposure to the brain and were not associated with the development of memory performance. "A unique feature of this study is the use of objectively collected mobile phone user data from mobile phone operators." said Röösli. He emphasised that further research is needed to rule out the influence of other factors. "For instance, the study results could have been affected by puberty, which affects both mobile phone use and the participant's cognitive and behavioural state."

The data gathered from the Health Effects Related to Mobile phone usE in adolescentS (HERMES) cohort looked at the relationship between exposure to RF-EMF and development of memory performance of almost 700 adolescents over the course of one year. Participants, aged 12 to 17 years, were recruited from 7th to 9th public school grades in urban and rural areas of Swiss-German speaking Switzerland.

Minimising the risk of RF-EMF exposure

The potential effect of RF-EMF exposure to the brain is a relatively new field of scientific inquiry. "It is not yet clear how RF-EMF could potentially affect brain processes or how relevant our findings are in the long-term." said Röösli. "Potential risks to the brain can be minimised by using headphones or the loud speaker while calling, in particular when network quality is low and the mobile phone is functioning at maximum power."
-end-
About the publication

The study was conducted by Swiss TPH in collaboration with the European Union project GERoNiMO, which aims to improve the knowledge of whether and to what extent RF-EMF affects health. The work on dose calculations was conducted in collaboration with Belgian scientists. The project was funded by the European Community's Seventh Framework Programme and the Swiss National Science Foundation (SNSF).

Foerster M., Thielens A., Joseph W., Eeftens M., Röösli M. (2018) A prospective cohort study of adolescents' memory performance and individual brain dose of microwave radiation from wireless communication. Environmental Health Perspectives. https://ehp.niehs.nih.gov/ehp2747

Schoeni A., Roser K., Röösli M. (2015) Memory performance, wireless communication and exposure to radiofrequency electromagnetic fields: a prospective cohort study in adolescents. Environmental International. Volume 85. Page 343-351.

Media Contact

Martin Röösli, PhD, Professor of Environmental Epidemiology and Head of the Environmental Exposures and Health Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH), Tel +41 61 284 8383, martin.roosli@swissph.ch

Sabina Beatrice-Matter, Head of Communications, Swiss Tropical and Public Health Institute (Swiss TPH), Tel +41 61 284 8364, Mob +41 79 737 9158, sabina.beatrice@swisstph.ch

Swiss Tropical and Public Health Institute

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".