Nav: Home

The tale of mRNA mixed tail

July 19, 2018

One method cells have to reliably curb the amount of specific proteins at any desired time is the control on mRNA degradation. As the mRNA's tail plays a role in this process, biologists at the Center for RNA Research, within the Institute for Basic Science (IBS, South Korea), have identified how mixed tails - made of different nucleotides - protect mRNA from degradation for longer. Published in Science, these findings could bring new insights to our understanding of gene regulation in healthy and diseased states.

mRNA is a delicate molecule with an important function; it brings genetic information contained in the DNA out of the nucleus to produce proteins. When a gene is transcribed into messenger RNA (mRNA), the mRNA is equipped with a tail, that acts like a shield against pre-mature degradation.

Until recently, mRNA tails were thought to be merely a chain of hundreds of adenosine (A) monophosphate nucleotides, and was thus commonly called the poly(A) tail. Specific enzymes lengthen and shorten the tail by adding and pruning A's from its end: poly(A) polymerases add a chain of around 200 A's; and deadenylases, such as the CNOT complex, trim down the poly(A) tails over time starting from the A's at the tip of the tail.

In 2014, IBS researchers discovered that the mRNA tail is not limited to A's. They developed a high-throughput sequencing method, TAIL-seq, to accurately measure the length of poly(A) tails at a genome-wide scale. They found out that other nucleotides other than A's, like guanosine (G), uridine (U) and cytosine (C), decorated the tail end. Mixed tails were reported in an evolutionarily broad range of species, including: humans, mice, frogs, and fish, adding further importance to this topic.

In this current study, IBS researchers found out that some of the enzymes that insert A's to the tail, are able to add also G's, U's, and C's, creating a mixed tail. In particular, nucleotidyltransferase TENT4A/B intermittently adds G's when extending the mRNA tail. Interestingly, in cells G's are located mainly at the very end of the tail, or at the next to last position. This can be explained by the fact that the enzymes that prune the poly(A) tails stall when they encounter a G, rather than an A, at the end of the tail. In other words, the research team found out that a G addition may slow down the trimming of the tail, thereby protecting it.

"Non-adenosines added by TENT4A/B have a considerable stalling effect. Just one is enough to counteract poly(A) trimming enzymes and stabilize the mRNA," explains Young-suk Lee, one of the authors of the study. The mRNAs with mixed tails were indeed reduced in cells lacking TENT4A/B.

"The mRNA tail has been considered a pure stretch of A's with little informational content, except for its length. However, this study proves that even tails of the same length can have different composition, and a mixed tail degrades more slowly than the pure poly(A) tail," explains KIM Narry, corresponding author of the study and director of the Center. "Through this study, we can understand the life history of complex mRNA by revealing a new kind of mRNA protection mechanism that was not known before."

In the future, the team would like to expand their research to various biological systems, and to understand how misbehaving tailing mechanisms can lead to various diseases. In addition, they would like to develop a RNA-based gene therapy method that utilizes the mixed tailing effect in cells to enhance mRNA stability.
-end-


Institute for Basic Science

Related Enzymes Articles:

Fungal enzymes team up to more efficiently break down cellulose
Cost-effectively breaking down bioenergy crops into sugars that can then be converted into fuel is a barrier to commercially producing sustainable biofuels.
How enzymes communicate
Freiburg scientists explain the cell mechanism that transforms electrical signals into chemical ones.
Pac-Man-like CRISPR enzymes have potential for disease diagnostics
UC Berkeley researchers have found 10 new variants of the Cas13a enzyme, the Pac-Man of the CRISPR world, that hold promise for disease diagnostics.
Hydrogen production: This is how green algae assemble their enzymes
Researchers at Ruhr-Universität Bochum have analyzed how green algae manufacture complex components of a hydrogen-producing enzyme.
New studies unravel mysteries of how PARP enzymes work
A component of an enzyme family linked to DNA repair, stress responses, and cancer also plays a role in enhancing or inhibiting major cellular activities under physiological conditions, new research shows.
Understanding enzymes
A new tool can help researchers more accurately identify enzymes present in microbiomes and quantify their relative abundances.
Light powers new chemistry for old enzymes
Princeton researchers have developed a method that irradiates biological enzymes with light to expand their highly efficient and selective capacity for catalysis to new chemistry.
Research finds enzymes essential for DNA repair
Scientists at The Australian National University and Heidelberg University in Germany have found an essential component in the DNA repair process which could open the door to the development of new cancer drugs.
New step towards clean energy production from enzymes
Oxygen inhibits hydrogenases, a group of enzymes that are able to produce and split hydrogen.
Genetic diversity of enzymes alters metabolic individuality
Scientists from Tohoku University's Tohoku Medical Megabank Organization have published research about genetic diversity and metabolome in Scientific Reports.

Related Enzymes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".