Nav: Home

Enzyme identified as possible novel drug target for sickle cell disease, Thalassemia

July 19, 2018

Medical researchers have identified a key signaling protein that regulates hemoglobin production in red blood cells, offering a possible target for a future innovative drug to treat sickle cell disease (SCD). Experiments in cultured human cells reveal that blocking the protein reduces the characteristic sickling that distorts the shape of red blood cells and gives the disease its name.

"We have found a protein with activity specifically in red blood cells that could be a 'druggable' target, possibly with a small molecule--a pill that patients could take to treat sickle cell disease," said study co-leader Gerd A. Blobel, MD, PhD, a scientist at Children's Hospital of Philadelphia (CHOP). Blobel and study co-leader Junwei Shi, PhD, of the Perelman School of Medicine at the University of Pennsylvania, published their findings online July 19 in Science.

The signaling protein, or kinase, called HRI, has been known to regulate production of hemoglobin, the iron-carrying component of red blood cells. The new results reveal an unexpected role of HRI in a process called "hemoglobin switching." This is a transition that normally occurs in newborns during which red blood cells switch from producing a fetal form of hemoglobin to an adult form. The mutation that causes SCD is present in the adult form of hemoglobin, which is why the disease affects patients only after birth.

The SCD mutation causes cells to assume the abnormal crescent shape that clogs blood vessels and damages organs, with painful, sometimes life-threatening results. Hematologists have long known that SCD patients with higher ratios of fetal hemoglobin compared to adult hemoglobin have a milder form of the disease. The drug hydroxyurea, which increases fetal hemoglobin, is the current standard of care, but is not effective in all patients. Therefore, the current researchers sought an improved treatment.

Blobel and Shi relied on a screening tool using CRISPR gene-editing techniques. Shi had previously developed this tool to hone in on specific functional domains of genes, without interfering with the functions of entire genes. In this particular screen, the researchers focused on a class of domains encompassing protein kinases, enzymes that can potentially be inhibited by a small molecule.

The screen enabled the researchers to discover HRI as the kinase that helps to silence fetal hemoglobin production in adult red blood cells. Moreover, by identifying an HRI-regulated transcription factor already known to repress fetal hemoglobin, their study added a piece to the puzzle as to how HRI suppresses fetal hemoglobin production. When they selectively knocked out HRI's function, they raised the level of fetal hemoglobin in red blood cells.

Crucially, the researchers were able to decrease sickling in red blood cells obtained from SCD patients, without impairing the viability or maturation of the cells--suggesting that losing the function of HRI is well tolerated.

In proof-of-concept experiments, Blobel and Shi further examined whether a future drug that inhibits HRI might be more effective when combined with other drugs designed to raise fetal hemoglobin. The scientists combined HRI depletion with treatment with pomalidomide, an experimental drug known to increase fetal hemoglobin. In cell cultures, using HRI depletion and pomalidomide together had a stronger effect than using each approach separately, supporting the idea of a combination therapy for SCD.

Another potential application of this finding, added Blobel, may be in another inherited blood disorder, beta-thalassemia, also involving abnormal hemoglobin. Although beta-thalassemias can be caused by many different mutations, a subset of beta-thalassemia patients might benefit from future treatments that target HRI.

"Our long-term goal is to carry out follow-up studies to evaluate whether this approach improves clinical outcomes in patients," said Blobel. "At this point, our results suggest that HRI is a potential target for a new treatment for disorders of hemoglobin."
-end-
Funding for this study came from the National Institutes of Health (grants HL119479, DK058044, and others) and Cold Spring Harbor Laboratory. Blobel, Shi and co-author Jeremy Grevet are inventors of a patent submitted by CHOP that covers the therapeutic targeting of HRI for hemoglobinopathies.

Jeremy D. Grevet, al, "Domain-focused CRISPR-screen identifies HRI as a fetal hemoglobin regulator in human erythroid cells," Science, online July 19, 2018, in print July 20. http://doi.org/10.1126/science.aao0932.

About Children's Hospital of Philadelphia: Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals, and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country. In addition, its unique family-centered care and public service programs have brought the 546-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit http://www.chop.edu

Children's Hospital of Philadelphia

Related Red Blood Cells Articles:

Natural resistance to malaria linked to variation in human red blood cell receptors
Researchers have discovered that protection from the most severe form of malaria is linked with natural variation in human red blood cell genes.
Researchers use modified insulin and red blood cells to regulate blood sugar
Researchers have developed a new technique that uses modified insulin and red blood cells to create a glucose-responsive 'smart' insulin delivery system.
Resilient red blood cells need fuel to adapt their shape to the environment
An international research team led by Osaka University built a novel 'Catch-Load-Launch' microfluidic device to monitor the resilience of red blood cells after being held in a narrow channel for various periods of time.
Major breakthrough in the manufacture of red blood cells
Researchers have generated the first immortalized cell lines which allow more efficient manufacture of red blood cells.
Cargo-carrying red blood cells alleviate autoimmune diseases in mice
Using red blood cells modified to carry disease-specific antigens, a team of scientists from Whitehead Institute and Boston Children's Hospital have prevented and alleviated two autoimmune diseases -- multiple sclerosis (MS) and type 1 diabetes --i n early stage mouse models.
UNC-Chapel Hill researchers use light to launch drugs from red blood cells
Scientists at the University of North Carolina at Chapel Hill have developed a breakthrough technique that uses light to activate a drug stored in circulating red blood cells so that it is released exactly when and where it is needed.
Andeans with altitude sickness produce massive amounts of red blood cells
To better understand why some people adapt well to life at high altitude while others don't, researchers at University of California San Diego School of Medicine studied red blood cells derived from representatives of both groups living in the Andes Mountains.
Pretreating red blood cells with nitric oxide may reduce side effect linked to transfusions
A new treatment may diminish a dangerous side effect associated with transfusions of red blood cells (RBCs) known as pulmonary hypertension, an elevated blood pressure in the lungs and heart that can lead to heart failure, suggests a new study published in the November issue of Anesthesiology, the peer-reviewed medical journal of the American Society of Anesthesiologists (ASA).
Expert panel issues updated guidelines for red blood cell storage time and transfusion use
For most stable hospitalized patients, transfusions of red blood cells stored for any time point within their licensed dating period -- so-called standard issue -- are as safe as transfusions with blood stored 10 days or less, or 'fresh,' according to updated clinical guidelines issued by an expert panel convened by a national organization that has long set standards for blood banking and transfusion practices.
Updated AABB guidelines for when to perform red blood cell transfusion, optimal length of RBC storage
In a report published online by JAMA, Jeffrey L. Carson, M.D., of Rutgers Robert Wood Johnson Medical School, New Brunswick, N.J., and colleagues provide recommendations for the AABB (previously known as the American Association of Blood Banks) for the target hemoglobin level for red blood cell (RBC) transfusion among hospitalized adult patients who are hemodynamically stable and the length of time RBCs should be stored prior to transfusion.

Related Red Blood Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".