Nav: Home

Relax, just break it

July 19, 2018

The properties of a solid depend on the arrangement of its atoms, which form a periodic crystal structure. At the nanoscale, arrangements that break this periodic structure can drastically alter the behavior of the material, but this is difficult to measure. Recent advances by scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory are starting to unravel this mystery.

Using state-of-the art neutron and synchrotron X-ray scattering, Argonne scientists and their collaborators are helping to answer long-held questions about a technologically important class of materials called relaxor ferroelectrics, which are often lead-based. These materials have mechanical and electrical properties that are useful in applications such as sonar and ultrasound. The more scientists understand about the internal structure of relaxor ferroelectrics, the better materials we can develop for these and other applications.

"We understand the long-range order very well, but for this experiment we developed novel tools and methods to study the local order."
-- Stephan Rosenkranz, Argonne senior physicist

The dielectric constants of relaxor ferroelectrics, which express their ability to store energy when in an electric field, have an unusual dependence on the frequency of the field. Its origin has long been a mystery to scientists. Relaxor ferroelectrics can also have exceedingly high piezoelectric properties, which means that when mechanically strained they develop an internal electric field, or, conversely, they expand or contract in the presence of an external electric field. These properties make relaxor ferroelectrics useful in technologies where energy must be converted between mechanical and electrical.

Because lead is toxic, scientists are trying to develop non-lead-based materials that can perform even better than the lead-based ferroelectrics. To develop these materials, scientists are first trying to uncover what aspects of the relaxor ferroelectric's crystal structure cause its unique properties. Although the structure is orderly and predictable on average, deviations from this order can occur on a local, or nanoscale level. These breaks in the long-range symmetry of the overall structure play a crucial role in determining the material's properties.

"We understand the long-range order very well, but for this experiment we developed novel tools and methods to study the local order," said Argonne senior physicist Stephan Rosenkranz.

Scientists from Argonne and the National Institute of Standards and Technology, along with their collaborators, studied a series of lead-based ferroelectrics with different local orders, and therefore different properties. Using new instrumentation designed by Argonne scientists that is able to provide a much larger and more detailed measurement than previous instruments, the team studied the diffuse scattering of the materials, or how the local deviations in structure affect the otherwise more orderly scattering pattern.

Previous researchers have identified a certain diffuse scattering pattern, which takes the shape of a butterfly, and associated it with the anomalous dielectric properties of relaxor ferroelectrics. When Argonne scientists analyzed their experimental data, however, they found that the butterfly-shaped scattering was strongly correlated with piezoelectric behavior.

"Now we can think about what kind of local order causes this butterfly scattering, and how can we design materials that have the same structural features that give rise to this effect," said Argonne physicist Danny Phelan.

As for the real cause of the anomalous dielectric properties, the scientists propose that it arises from competing interactions that lead to "frustration" in the material.

The new discoveries stemmed from the scientists' use of both neutron scattering and X-ray scattering. "There is invaluable complementarity to using both of these techniques," said Phelan. "Using one or the other doesn't give you the whole picture."

The scientists will use these discoveries to inform models of relaxor ferroelectrics that are used to develop new materials. Future experiments will further illuminate the relationship between local order and material properties.
The team published their results in a Nature Materials paper, titled "The relation of local order to material properties in relaxor ferroelectrics," on June 25.

The team used the Spallation Neutron Source, a DOE Office of Science User Facility, located at DOE's Oak Ridge National Laboratory and the Cornell High Energy Synchrotron Source in their research. This research was funded by the DOE Office of Science, Basic Energy Sciences program. The work was also supported by the National Science Foundation, the U.S. Office of Naval Research, the Natural Sciences and Engineering Research Council of Canada and the National Institute of Standards and Technology, U.S. Department of Commerce.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

DOE/Argonne National Laboratory

Related Crystal Structure Articles:

DIY crystal-makers get refurbished online cookbook
In response to popular demand, materials scientists at Duke University have resurrected an online cookbook of crystalline structures that started when the World Wide Web was Netscape Navigator and HTML 1.0.
Dawn of organic single crystal electronics
Researchers at the Institute for Molecular Science, National Institutes of Natural Sciences (Japan) have developed a method for high performance doping of organic single crystal.
Crystallization made crystal clear
Researchers at the Weizmann Institute of Science have, for the first time, directly observed the process of crystallization on the molecular level, validating some recent theories about crystallization, as well as showing that if one knows how the crystal starts growing, one can predict the end structure.
Mapping the effects of crystal defects
MIT research offers insights into how crystal dislocations -- a common type of defect in materials -- can affect electrical and heat transport through crystals, at a microscopic, quantum mechanical level.
Scientists create new form of matter, a time crystal
Scientists are reporting in the journal Nature on the creation of a phase of matter, dubbed a time crystal, in which atoms move in a pattern that repeats in time rather than in space.
Most complex nanoparticle crystal ever made by design
The most complex crystal designed and built from nanoparticles has been reported by researchers at Northwestern University and the University of Michigan.
In-cell molecular sieve from protein crystal
Scientists at Tokyo Institute of Technology, RIKEN, and Kyoto Institute of Technology have applied rational crystal design to create protein crystals with extended porous network to accumulate exogenous molecules inside living cells.
Novel liquid crystal could triple sharpness of today's televisions
An international team of researchers has developed a new blue-phase liquid crystal that could enable televisions, computer screens and other displays that pack more pixels into the same space while also reducing the power needed to run the device.
Researcher's discovery of new crystal structure holds promise for optoelectronic devices
A Florida State University professor has observed a never-been-seen crystal structure that holds promise for optoelectronic devices.
Einstein in an iron crystal
Angle-resolved photoemission spectroscopy has enabled scientists from Forschungszentrum Jülich and LMU Munich to directly visualize the formation of shifts in the band structure (band gaps) of a sample of prototypical magnetic material as a response to the change in direction of a magnetic field.

Related Crystal Structure Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".