Nav: Home

Toward a secure electrical grid

July 19, 2018

Not long ago, getting a virus was about the worst thing computer users could expect in terms of system vulnerability. But in our current age of hyper-connectedness and the emerging Internet of Things, that's no longer the case. With connectivity, a new principle has emerged, one of universal concern to those who work in the area of systems control, like João Hespanha, a professor in the departments of Electrical and Computer Engineering, and Mechanical Engineering at UC Santa Barbara. That law says, essentially, that the more complex and connected a system is, the more susceptible it is to disruptive cyber-attacks.

"It is about something much different than your regular computer virus," Hespanha said. "It is more about cyber physical systems -- systems in which computers are connected to physical elements. That could be robots, drones, smart appliances, or infrastructure systems such as those used to distribute energy and water."

In a paper titled "Distributed Estimation of Power System Oscillation Modes under Attacks on GPS Clocks," published this month in the journal IEEE Transactions on Instrumentation and Measurement, Hespanha and co-author Yongqiang Wang (a former UCSB postdoctoral research and now a faculty member at Clemson University) suggest a new method for protecting the increasingly complex and connected power grid from attack.

The question that arises in any system that incorporates many sensors for monitoring is, what if someone intercepts the communication between two sensors that are trying to assess the health of the system? How does the system know not to believe -- and act on -- the false information?

Hespanha explained, "In the power grid, you have to be able to identify what the voltage and the current are at specific, highly precise points in time" for multiple points along the grid. Knowing the speed at which electricity moves, the distance between sensors, and the time it takes an oscillation to move between sensors, one can determine whether the oscillation is real.

Making these precise, high-resolution measurements anywhere in the grid is possible through the use of phase measurement units (PMUs) -- devices that are aligned with the atomic clocks used in GPS. With the energy grid becoming increasingly distributed, power providers now have to monitor the system more, and PMUs are among the most important devices for doing so. While PMUs could be used to inform autonomous control systems, so far, they have seen limited use for one simple reason: they are vulnerable to GPS spoofing attacks.

"There is the possibility," Hespanha said, "that someone will hack the system and cause a catastrophic failure."

The attack could be as simple as someone taking a GPS jammer to a remote power-distribution station and tricking the system into providing false measurements, leading to a cascade effect as false readings ripple through the system and incorrect actions are taken. Since it is virtually impossible to prevent a hacker from getting close enough to a remote substation to jam its GPS, Hespanha said, "What you need is a control system that can process the information to make good decisions. The system has to keep hypothesizing that what it is reading is not real."

How It Can Work

"The power-supply system is a distributed system, so measurements are being made in many places," Hespanha explained. "If one of them starts to give erratic or unexpected measurements -- a sudden current surge or a voltage drop -- you should be able to determine whether those measurements make sense."

In the case of an actual fluctuation, such as when many people in Los Angeles are using their air-conditioning on a hot summer day, the result may be a slight drop in the alternating-current frequency in the city. That drop creates a disturbance which propagates along the power grid stretching from western Canada south to Baja California in Mexico and reaching eastward over the Rockies to the Great Plains. As the disturbance travels through the grid, the power stations that feed the grid try to counteract it by generating extra power if the frequency is too low or decreasing production if the frequency becomes too high.

"You're going to start by seeing oscillation on the grid," Hespanha explained. "That's exactly what the PMUs are looking for. You then compare the precise time you saw the disturbance in Los Angeles to the time you saw it in Bakersfield and then at other sensors as it continues north. And if those readings don't reflect the physics of how electricity moves, that's an indication something's wrong. The PMUs are there to see oscillations and to help dampen them to prevent them from developing."

But, if someone fooled an automated system, instead of damping the oscillations, the PMUs could create them instead.

So how would such an attack be recognized and stopped? To illustrate, Hespanha draws an electrical line running between Los Angeles and Seattle, with many smaller, ancillary lines running off to the sides. "If power is going in a certain direction, you should also be able to see any oscillation in the side lines in that direction. And you know the physical model of what things should do, so an attacker who changed the measurement on the main line would also have to mess up a lot of other measurements on the side lines along the way. And that would be very difficult."

Testing suggests that Hespanha's system would be resistant to attack and remain effective even if one-third of the sensor nodes were compromised. "That would allow for a much more autonomous system; that's the next big step," said Hespanha. "This is an enabling technology that will be needed to make a lot of this control come online. And it will be needed soon, because the system gets more complex all the time and is therefore more susceptible to attack."

University of California - Santa Barbara

Related Power Grid Articles:

Installing solar to combat national security risks in the power grid
Power grid vulnerabilities are one of the most prevalent national security threats.
Off-grid power in remote areas will require special business model to succeed
Low-cost, off-grid solar energy could provide significant economic benefit to people living in some remote areas, but a new study suggests they generally lack the access to financial resources, commercial institutions and markets needed to bring solar electricity to their communities.
NREL supercomputing model provides insights from higher wind and solar generation in the eastern power grid
A new study from the United States Department of Energy's National Renewable Energy Laboratory used high-performance computing capabilities and innovative visualization tools to model, in unprecedented detail, how the power grid of the eastern United States could operationally accommodate higher levels of wind and solar photovoltaic generation.
Medical and public health effects of total power grid outage in a major city
This meeting will inform attendees with factual information and educational resources characterizing the current and emerging threats to our bulk power grids which would catastrophically degrade nationwide provision of healthcare and other emergency capabilities; and identify and discuss principal direct, indirect and cascading effects of power outage following a national-level outage event.
Algorithm could help detect and reduce power grid faults
The power grid is aging, overburdened and seeing more faults than ever, according to many.
Leaving the electrical grid in the Upper Peninsula
While Michigan's Upper Peninsula is not the sunniest place in the world, solar energy is viable in the region.
'Pee power' turns urine into sustainable power source for electronic devices
Researchers at the University of Bath have developed an innovative miniature fuel cell that can generate electricity from urine, creating an affordable, renewable and carbon-neutral way of generating power.
Grid cells' role in human imagination revealed
Evidence of grid cell activity has been seen in healthy volunteers asked to imagine moving through an environment.
Device 'fingerprints' could help protect power grid, other industrial systems
Researchers are using the unique electronic 'voices' produced by devices on the electrical grid to determine which signals are legitimate and which signals might be from attackers.
Realistic data needed to evolve the 21st century power grid
PNNL is helping to create open-access power grid datasets for use in testing new grid technologies.

Related Power Grid Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".