Nav: Home

Successful application of machine learning in the discovery of new polymers

July 19, 2019

A joint research group including Ryo Yoshida (Professor and Director of the Data Science Center for Creative Design and Manufacturing at the Institute of Statistical Mathematics [ISM], Research Organization of Information and Systems), Junko Morikawa (Professor at the School of Materials and Chemical Technology, Tokyo Institute of Technology [Tokyo Tech]), and Yibin Xu (Group Leader of Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration, Research and Services Division of Materials Data and Integrated System [MaDIS], NIMS) has demonstrated the promising application of machine learning (ML) -- a form of AI that enables computers to "learn" from given data -- for discovering innovative materials.

Reporting their findings in the open-access journal npj Computational Materials, the researchers show that their ML method, involving "transfer learning", enables the discovery of materials with desired properties even from an exceeding small data set.

The study drew on a data set of polymeric properties from PoLyInfo, the largest database of polymers in the world housed at NIMS. Despite its huge size, PoLyInfo has a limited amount of data on the heat transfer properties of polymers. To predict the heat transfer properties from the given limited data, ML models on proxy properties were pre-trained where sufficient data were available on the related tasks; these pre-trained models captured common features relevant to the target task. Re-purposing such machine-acquired features on the target task yielded outstanding prediction performance even with the exceedingly small datasets, as if highly experienced human experts can make rational inferences even for considerably less experienced tasks. The team combined this model with a specially designed ML algorithm for computational molecular design, which is called the iQSPR algorithm previously developed by Yoshida and his colleagues. Applying this technique enabled the identification of thousands of promising "virtual" polymers.

From this large pool of candidates, three polymers were selected based on their ease of synthesis and processing.

Tests confirmed that the new polymers have a high thermal conductivity of up to 0.41 Watts per meter-Kelvin (W/mK). This figure is 80 percent higher than that of typical polyimides, a group of commonly used polymers that have been mass-produced since the 1950s for applications ranging from fuel cells to cookware.

By verifying the heat transfer properties of the computationally designed polymers, the study represents a key breakthrough for fast, cost-effective, ML-supported methods for materials design. It also demonstrates the team's combined expertise in data science, organic synthesis and advanced measurement technologies.

Yoshida comments that many aspects remain to be explored, such as "training" computational systems to work with limited data by adding more suitable descriptors. "Machine learning for polymer or soft material design is a challenging but promising field as these materials have properties that differ from metals and ceramics, and are not yet fully predicted by the existing theories," he says.

The study is a starting point for the discovery of other innovative materials, as Morikawa adds: "We would like to try to create an ML-driven high-throughput computational system to design next-generation soft materials for applications going beyond the 5G era. Through our project, we aim to pursue not only the development of materials informatics but also contribute to fundamental advancement of materials science, especially in the field of phonon engineering."
-end-
This work was conducted as part of the "Materials Research by Information Integration" Initiative (MI2I), an open innovation accelerator selected by the Japan Science and Technology Agency (JST) as a support program for starting up innovation hub and implemented by NIMS.

Tokyo Institute of Technology

Related Fuel Cells Articles:

Ammonia for fuel cells
Researchers at the University of Delaware have identified ammonia as a source for engineering fuel cells that can provide a cheap and powerful source for fueling cars, trucks and buses with a reduced carbon footprint.
Microorganisms build the best fuel efficient hydrogen cells
With billions of years of practice, nature has created the most energy efficient machines.
Atomically precise models improve understanding of fuel cells
Simulations from researchers in Japan provide new insights into the reactions occurring in solid-oxide fuel cells by using realistic atomic-scale models of the electrode active site based on microscope observations instead of the simplified and idealized atomic structures employed in previous studies.
New core-shell catalyst for ethanol fuel cells
Scientists at Brookhaven Lab and the University of Arkansas have developed a highly efficient catalyst for extracting electrical energy from ethanol, an easy-to-store liquid fuel that can be generated from renewable resources.
The 'Batman' in hydrogen fuel cells
In a study published in Nature on Jan. 31, researchers at the University of Science and Technology of China (USTC) report advances in the development of hydrogen fuel cells that could increase its application in vehicles, especially in extreme temperatures like cold winters.
New catalysts for better fuel cells
Researchers in Korea have fabricated nano-sized catalysts that could improve the performance and production of clean energy fuel cells.
Scientists identify new fuel-delivery route for cells
Scientists at Washington University School of Medicine in St. Louis have identified a previously unknown route for cellular fuel delivery, a finding that could shed light on the process of aging and the chronic diseases that often accompany it.
Argonne scientists maximize the effectiveness of platinum in fuel cells
In new research from the U.S. Department of Energy's Argonne National Laboratory and published in Science, scientists have identified a new catalyst that uses only about a quarter as much platinum as current technology by maximizing the effectiveness of the available platinum.
Scientists unravel the mysteries of polymer strands in fuel cells
Fuel cell efficiency of hydrogen fuel cells decreases as the Nafion membrane, used to separate the anode and cathode within a fuel cell, swells as it interacts with water.
Changes in the architecture around cancer cells can fuel their spread
UCLA researchers have found that the extracellular matrix, the dense network of proteins and carbohydrates that surround a cell, can influence how cells move within the body by regulating their sugar consumption.
More Fuel Cells News and Fuel Cells Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.