Nav: Home

Atomically precise models improve understanding of fuel cells

July 19, 2019

Simulations from researchers in Japan provide new insights into the reactions occurring in solid-oxide fuel cells by using realistic atomic-scale models of the active site at the electrode based on microscope observations as the starting point. This better understanding could give clues on ways to improve performance and durability in future devices.

Extremely promising for the clean and efficient electricity generation, solid-oxide fuels cells produce electricity through the electrochemical reaction of a fuel with air, and they have already begun to find their way into homes and office buildings throughout Japan.

In a typical fuel cell, oxygen molecules on one side of the fuel cell first receive electrons and break up into oxide ions. The oxide ions then travel through an electrolyte to the other side of the device, where they react with the fuel and release their extra electrons. These electrons flow through outside wires back to the starting side, thereby completing the circuit and powering whatever is connected to the wires.

Although this overall reaction is well known and relatively simple, the reaction step limiting the overall rate of the process remains controversial because the complicated structures of the electrodes--which are generally porous materials as opposed to simple, flat surfaces--hinder investigation of the phenomena at the atomic level.

Since detailed knowledge about the reactions occurring in the devices is vital for further improving the performance and durability of fuel cells, the challenge has been to understand how the microscopic structures--down to the alignment of the atoms at the different interfaces--affect the reactions.

"Computer simulations have played a powerful role in predicting and understanding reactions that we cannot easily observe on the atomic or molecular scale," explains Michihisa Koyama, the head of the group that led the research at Kyushu University's INAMORI Frontier Research Center.

"However, most studies have assumed simplified structures to reduce the computational cost, and these systems cannot reproduce the complex structures and behavior occurring in the real world."

Koyama's group aimed to overcome these shortcomings by applying simulations with refined parameters to realistic models of the key interfaces based on microscopic observations of the actual positions of the atoms at the active site of the electrode.

Leveraging the strength of Kyushu University's Ultramicroscopy Research Center, the researchers carefully observed the atomic structure of thin slices of the fuel cells using atomic-resolution electron microscopy. Based on these observations, the researchers then reconstructed computer models with the same atomic structures for two representative arrangements that they observed.

Reactions between hydrogen and oxygen in these virtual fuel cells were then simulated with a method called Reactive Force Field Molecular Dynamics, which uses a set of parameters to approximate how atoms will interact--and even chemically react--with each other, without going into the full complexity of rigorous quantum chemical calculations. In this case, the researchers employed an improved set of parameters developed in collaboration with Yoshitaka Umeno's group at the University of Tokyo.

Looking at the outcome of multiple runs of the simulations on the different model systems, the researchers found that the desired reactions were more likely to occur in the layers with a smaller pore size.

Furthermore, they identified a new reaction pathway in which oxygen migrates through the bulk layers in a way that could potentially degrade performance and durability. Thus, strategies to avoid this potential reaction route should be consider as researchers work to design improved fuel cells.

"These are the kinds of insights that we could only get by looking at real-world systems," comments Koyama. "In the future, I expect to see more people using real-world atomic structures recreated from microscope observations for the basis of simulations to understand phenomena that we cannot easily measure and observe in the laboratory."
-end-
For more information about this research, see "Atomic structure observations and reaction dynamics simulations on triple phase boundaries in solid-oxide fuel cells," Shu-Sheng Liu, Leton C. Saha, Albert Iskandarov, Takayoshi Ishimoto, Tomokazu Yamamoto, Yoshitaka Umeno, Syo Matsumura, and Michihisa Koyama, Communications Chemistry (2019), https://doi.org/10.1038/s42004-019-0148-x

Kyushu University

Related Fuel Cells Articles:

Fuel cells for hydrogen vehicles are becoming longer lasting
An international research team led by the University of Bern has succeeded in developing an electrocatalyst for hydrogen fuel cells which, in contrast to the catalysts commonly used today, does not require a carbon carrier and is therefore much more stable.
Scientists develop new material for longer-lasting fuel cells
New research suggests that graphene -- made in a specific way -- could be used to make more durable hydrogen fuel cells for cars
AI could help improve performance of lithium-ion batteries and fuel cells
Imperial College London researchers have demonstrated how machine learning could help design lithium-ion batteries and fuel cells with better performance.
Engineers develop new fuel cells with twice the operating voltage as hydrogen
Engineers at the McKelvey School of Engineering at Washington University in St.
Iodide salts stabilise biocatalysts for fuel cells
Contrary to theoretical predictions, oxygen inactivates biocatalysts for energy conversion within a short time, even under a protective film.
Instant hydrogen production for powering fuel cells
Researchers from the Chinese Academy of Sciences, Beijing and Tsinghua University, Beijing investigate real-time, on-demand hydrogen generation for use in fuel cells, which are a quiet and clean form of energy.
Ammonia for fuel cells
Researchers at the University of Delaware have identified ammonia as a source for engineering fuel cells that can provide a cheap and powerful source for fueling cars, trucks and buses with a reduced carbon footprint.
Microorganisms build the best fuel efficient hydrogen cells
With billions of years of practice, nature has created the most energy efficient machines.
Atomically precise models improve understanding of fuel cells
Simulations from researchers in Japan provide new insights into the reactions occurring in solid-oxide fuel cells by using realistic atomic-scale models of the electrode active site based on microscope observations instead of the simplified and idealized atomic structures employed in previous studies.
New core-shell catalyst for ethanol fuel cells
Scientists at Brookhaven Lab and the University of Arkansas have developed a highly efficient catalyst for extracting electrical energy from ethanol, an easy-to-store liquid fuel that can be generated from renewable resources.
More Fuel Cells News and Fuel Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: IRL Online
Original broadcast date: March 20, 2020. Our online lives are now entirely interwoven with our real lives. But the laws that govern real life don't apply online. This hour, TED speakers explore rules to navigate this vast virtual space.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Falling
There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at Radiolab.org/donate.