Study sheds light on the darker parts of our genetic heritage

July 19, 2019

More than half of our genome consists of transposons, DNA sequences that are reminiscent of ancient, extinct viruses. Transposons are normally silenced by a process known as DNA methylation, but their activation can lead to serious diseases. Very little is known about transposons but researchers in an international collaboration project have now succeeded for the first time in studying what happens when DNA methylation is lost in human cells. These findings provide new insight into how changes in DNA methylation contribute to diseases.

Even when our DNA is intact, the expression and behaviour of our genes can change. This can happen in various ways, including through DNA methylation, a chemical process which shuts off genes and other parts of our genome, such as transposons.

Transposons - jumping genes - are sometimes referred to as the dark part of our genome and consist of transposable DNA sequences that can cause genetic change, for example if they are integrated into a gene. These transposons are often silenced during foetal development, specifically by DNA methylation.

"Sometimes, however, DNA methylation is disrupted and studies have shown that this is significant in certain cancer tumours and in some neuropsychiatric diseases. DNA methylation is used as a target for therapy in certain cancer types, such as leukaemia, but we still lack knowledge about why this is effective and why it only works for certain types of cancer", says Johan Jakobsson, professor at Lund University and leader of the study, which also included researchers from the Max Planck Institute for Molecular Genetics and Karolinska Institutet. The findings are now published in Nature Communications.

In fact, we know very little about the role of transposons in our DNA. One theory held by the researchers in Lund is that DNA methylation silences the parts of the genome that are not used, but only now has it been possible to study what happens when this process is removed from human cells.

The researchers used the CRISPR/Cas9 technique to successfully shut down DNA methylation in human neural stem cells in the laboratory.

"The results were very surprising. If you shut down DNA methylation in mouse cells, they don't survive. But when DNA methylation was shut down in the human nerve stem cells, they survived and a specific set of transposons were activated. These transposons in turn affected many genes that are important in the development of the nerve cells", says Johan Jakobsson.

Johan Jakobsson thinks that the results open up potential for a completely new understanding of how a loss of DNA methylation affects our genome in various diseases, but he also emphasises that the study was conducted on cultured cells in a laboratory. Now the researchers want to move forward and see what happens if they shut down methylation in cancer cells that are affected by DNA methylation, for example in glioblastoma.
-end-


Lund University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.