UEA research shows oceans vital for possibility for alien life

July 20, 2014

Researchers at the University of East Anglia have made an important step in the race to discover whether other planets could develop and sustain life.

New research published today in the journal Astrobiology shows the vital role of oceans in moderating climate on Earth-like planets.

Until now, computer simulations of habitable climates on Earth-like planets have focused on their atmospheres. But the presence of oceans is vital for optimal climate stability and habitability.

The research team from UEA's schools of Maths and Environmental Sciences created a computer simulated pattern of ocean circulation on a hypothetical ocean-covered Earth-like planet. They looked at how different planetary rotation rates would impact heat transport with the presence of oceans taken into account.

Prof David Stevens from UEA's school of Maths said: "The number of planets being discovered outside our solar system is rapidly increasing. This research will help answer whether or not these planets could sustain alien life.

"We know that many planets are completely uninhabitable because they are either too close or too far from their sun. A planet's habitable zone is based on its distance from the sun and temperatures at which it is possible for the planet to have liquid water.

"But until now, most habitability models have neglected the impact of oceans on climate.

"Oceans have an immense capacity to control climate. They are beneficial because they cause the surface temperature to respond very slowly to seasonal changes in solar heating. And they help ensure that temperature swings across a planet are kept to tolerable levels.

"We found that heat transported by oceans would have a major impact on the temperature distribution across a planet, and would potentially allow a greater area of a planet to be habitable.

"Mars for example is in the sun's habitable zone, but it has no oceans - causing air temperatures to swing over a range of 100OC. Oceans help to make a planet's climate more stable so factoring them into climate models is vital for knowing whether the planet could develop and sustain life.

"This new model will help us to understand what the climates of other planets might be like with more accurate detail than ever before."
-end-
'The Importance of Planetary Rotation Period for Ocean Heat Transport' is published in the journal Astrobiology on Monday, July 21, 2014. The research was funded by the Engineering and Physical Sciences Research Council (EPSRC).

University of East Anglia

Related Planets Articles from Brightsurf:

Stars and planets grow up together as siblings
ALMA shows rings around the still-growing proto-star IRS 63

Two planets around a red dwarf
The 'SAINT-EX' Observatory, led by scientists from the National Centre of Competence in Research NCCR PlanetS of the University of Bern and the University of Geneva, has detected two exoplanets orbiting the star TOI-1266.

Some planets may be better for life than Earth
Researchers have identified two dozen planets outside our solar system that may have conditions more suitable for life than our own.

Fifty new planets confirmed in machine learning first
Fifty potential planets have had their existence confirmed by a new machine learning algorithm developed by University of Warwick scientists.

Rogue planets could outnumber the stars
An upcoming NASA mission could find that there are more rogue planets - planets that float in space without orbiting a sun - than there are stars in the Milky Way, a new study theorizes.

Could mini-Neptunes be irradiated ocean planets?
Many exoplanets known today are ''super-Earths'', with a radius 1.3 times that of Earth, and ''mini-Neptunes'', with 2.4 Earth radii.

As many as six billion Earth-like planets in our galaxy, according to new estimates
There may be as many as one Earth-like planet for every five Sun-like stars in the Milky way Galaxy, according to new estimates by University of British Columbia astronomers using data from NASA's Kepler mission.

How planets may form after dust sticks together
Scientists may have figured out how dust particles can stick together to form planets, according to a Rutgers co-authored study that may also help to improve industrial processes.

Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.

The rare molecule weighing in on the birth of planets
Astronomers using one of the most advanced radio telescopes have discovered a rare molecule in the dust and gas disc around a young star -- and it may provide an answer to one of the conundrums facing astronomers.

Read More: Planets News and Planets Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.