Satellite data shows Tropical Cyclone Halola getting stronger

July 20, 2015

Tropical Depression Halola is getting stronger. NASA data pinpointed the area of strongest sustained winds on July 19 and the extent of those winds expanded on July 20 as Halola became a tropical storm again. NASA also gathered infrared data that showed cloud top temperatures getting colder, indicating more uplift or strength in the storm.

On July 19 at 2 p.m. GMT (10 a.m. EDT), the RapidScat instrument aboard the International Space Station gathered data on surface winds in Tropical Depression Halola. RapidScat saw the strongest sustained winds were on the northeastern side as strong as 22 meters per second (49.2 mph/79.2 kph). Winds around the rest of the storm were less strong.

The area of strongest winds appeared to expand on July 20 at 1152 UTC (7:52 a.m. EDT) when the ASCAT-A (Advanced Scatterometer) instrument that flies aboard Europe's EUMETSAT METOP satellite gathered wind data. ASCAT-A showed that Halola's winds were still not symmetrical, but the strongest winds were now along the northern and southeastern edges of the storm.

ASCAT uses radar to measure the electromagnetic backscatter from the wind-roughened ocean surface, from which data on wind speed and direction can be derived. These products are processed by NOAA/NESDIS utilizing measurements from ASCAT.

The Atmospheric Infrared Sounder (AIRS) instrument that flies aboard NASA's Aqua satellite captured infrared data on Halola. AIRS data showed cloud top temperatures were again as cold as -63F/-53C north and east of Tropical Storm Halola's center on July 20 at 3:05 UTC, indicating that there was stronger uplift of air in the storm which can push thunderstorm cloud tops higher in the atmosphere.

NASA research has determined that cloud tops with temperatures near -63 Fahrenheit or -53 Celsius have the ability to generate heavy rainfall (that's over 1 inch or 25 millimeters per hour). When cloud top temperatures are colder than that, the thunderstorms are likely to reach higher in the atmosphere and are likely to be stronger.

Tropical Depression Halola has once again become a tropical storm. At 1500 UTC (11 a.m. EDT), Halola's maximum sustained winds had increased to 50 knots (57.5 mph/92.6 kph). It was centered near 22.0 North latitude and 145.8 East longitude, about 334 nautical miles (384.4 miles/ 618.6 kph) east-southeast of Iwo To island, Japan. Halola has tracked west-northwestward at 12 knots (13.8 mph/22.2 kph).

The Joint Typhoon Warning Center noted that "animated enhanced infrared satellite imagery depicts tight curved banding [of thunderstorms] wrapping around the northern [quadrant] of the cyclone into a well-consolidated low level circulation center." Microwave data from the METOP-B satellite image showed that an eye was developing.

The Joint Typhoon Warning Center (JTWC) noted that vertical wind shear is easing, and Halola is forecast to move through warm sea surface temperatures allowing for it to strengthen. JTWC calls for Halola to reach typhoon status on Tuesday, July 21 and continue strengthening to 80 knots (92.0 mph/148.2 kph) before weakening on July 24.
-end-
For more information about how NASA uses infrared light in tropical cyclone research, visit:

http://www.nasa.gov/feature/goddard/a-lesson-in-infrared-light-looking-at-three-tropical-cyclones

NASA/Goddard Space Flight Center

Related Tropical Storm Articles from Brightsurf:

NASA finds powerful storm's around Tropical Storm Cristina's center
A low-pressure area strengthened quickly and became Tropical Storm Cristina in the Eastern Pacific Ocean and infrared imagery from NASA revealed the powerful thunderstorms fueling that intensification.

NASA satellite gives a hello to tropical storm Dolly
During the morning of June 23, the fourth system in the Northern Atlantic Ocean was a subtropical depression.

NASA follows Tropical Storm Nuri's path
An animation of four days of imagery from NASA's Terra satellite showed the progression and landfall of Tropical Storm Nuri.

NASA finds an elongated Phanfone now a tropical storm
NASA-NOAA's Suomi NPP satellite provided a visible image of Phanfone as it continues moving through the South China Sea.

Tropical Storm Krosa gets a comma shape
Tropical Storm Krosa continued on its journey northward in the Northwestern Pacific Ocean when NOAA's NOAA-20 polar orbiting satellite passed overhead and captured a visible image of the strengthening storm in a classic tropical cyclone shape.

Satellite shows Tropical Storm Flossie holding up
Satellite imagery showed that Tropical Storm Flossie's structure didn't change much overnight from July 31 to August 1.

NASA tropical storm Erick strengthening
Infrared imagery from NASA's Aqua satellite revealed a stronger Tropical Storm Erick in the Eastern Pacific Ocean.

GPM satellite provides a 3D look at Tropical Storm Barry
The Global Precipitation Measurement mission or GPM core satellite provided a couple of views of Tropical Storm Barry that showed its cloud heights and rainfall rates.

NASA looks at Tropical Storm Funani's rainfall
Tropical Storm Funani (formerly classified as 12S) continued to affect Rodrigues Island in the South Pacific Ocean when the GPM satellite passed overhead and analyzed its rainfall.

NASA sees Tropical Storm Man-yi approaching typhoon strength Tropical Storm Man-Yi con
Tropical Storm Man-Yi continued to strengthen in the Northwestern Pacific Ocean as NASA-NOAA's Suomi NPP satellite provided a visible image of the storm.

Read More: Tropical Storm News and Tropical Storm Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.