Nav: Home

New reaction for the synthesis of nanostructures

July 20, 2016

The collaboration between the research groups of professors Pau Ballester and José R. Galan-Mascaros at the Institute of Chemical Research of Catalonia (ICIQ), Dr. Jonas Björk at Linköping University and the group of Dr. David Ecija at Institute IMDEA Nanoscience has allowed the development of a new chemical reaction for the synthesis of low-dimensional polymers that can be rationalised as phthalocyanine derivatives. The results obtained have been published in Nature Communications.

Surface-mediated synthesis of low-dimensional polymers from simple molecular precursors is a rapidly emerging field. In this work, the researchers introduce surface-confined thermally tunable reaction pathways as a route to select intramolecular versus intermolecular reactions yielding either monomeric phthalocyanines or low-dimensional phthalocyanine polymers, respectively.The precursor was designed and synthesised at ICIQ's laboratories. Next at IMDEA Nanoscience, it was deposited on a gold surface where it has been gently annealed to more than 300ºC in order to study its behaviour. When the temperature rises up to 275ºC, the polymerisation of the molecule occurs resulting in phthalocyanine unidimensional polymers (phthalocyanine tapes) that had not been synthesised so far. However, if the molecules are deposited on a substrate held at 300ºC, the polymeric growth is blocked and the precursor is transformed into individual phthalocyanines. This selectivity induced by temperature, despite being a promising strategy for increasing the synthetic versatility, had not been used on surfaces up to now. Nevertheless, this use could have huge advantages when engineering nanostructures with technological applications.

"On-surface synthesis is a promising strategy for the formation of nanostructures. This new thermally controlled reaction presents a very interesting alternative for the development of new polymeric materials, which will satisfy the growing demand from disciplines such as nanotechnology, information technology and biotechnology" -say Prof. Galan-Mascaros and Dr. David Ecija.
-end-
Corresponding authors:

Pablo Ballester: pballester@iciq.es

José R. Galan-Mascaros: jrgalan@iciq.es

David Ecija: david.ecija@imdea.org

Ref:

Thermal selectivity of intermolecular versus intramolecular reactions on surfaces

B. Cirera, N. Giménez-Agulló, J. Björk, F. Martínez-Peña, A. Martin-jimenez, J. Rodríguez-Fernandez, A. M. Pizarro, R. Otero, J.M. Gallego, P. Ballester, J. R. Galan-Mascaros, D. Ecija Nature Communications, 2016, 7, 11002

About the Institute of Chemical Research of Catalonia:

The ICIQ is a member of the Barcelona Institute of Science and Technology and a leading international centre of chemical research. The institute has 19 research groups that work in the areas of catalysis (discovery and improvement of more sustainable chemical production processes and drug development) and renewable energies (generation of hydrogen from water, photovoltaic molecular, conversion of CO2 into materials and fuels of industrial interest). The ICIQ is a Centro de Excelencia Severo Ochoa, has received 14 grants from the European Research Council (ERC) and 9 of its researchers are ICREA professors.

About IMDEA Nanoscience:

IMDEA-Nanociencia is a private non profit Foundation created by initiative of the the regional Government of the Community of Madrid in November 2006 in order to shorten the distance between the research and society in the Madrid region and provide new capacity for research, technological development and innovation in the field of Nanoscience, Nanotechnology and Molecular Design. The Foundation manages the IMDEA-Nanociencia Institute, a new interdisciplinary research centre dedicated to the exploration of basic nanoscience and the development of applications of nanotechnology in connection with innovative industries.The IMDEA-Nanociencia Institute is part of one of the strategic lines of the Campus of International Excellence (CEI) UAM+CSIC.

Institute of Chemical Research of Catalonia (ICIQ)

Related Nanostructures Articles:

Nanostructures taste the rainbow
Engineers create nanoscale light detectors capable of distinguishing between different colors.
Simulations pinpoint atomic-level defects in solar cell nanostructures
Heterogeneous nanostructured materials are widely used in various optoelectronic devices, including solar cells.
Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission
Rare-earth-doped nanocrystals have become sought-after materials for cellular bioprobes because of their long emission lifetimes and low cytotoxicity.
Self-assembled nanostructures can be selectively controlled
Plasmonic nanoparticles exhibit properties based on their geometries and relative positions.
Researchers fabricate high performance Cu(OH)2 supercapacitor electrodes
Conducting electric current in the solution results in the efficient nano structure formatin on the copper substrate. using this technique high performance copper hydroxide supercapacitor electrodes have been fabricated.
Nanostructures made of pure gold
Researchers from TU Wien have discovered a novel way to fabricate pure gold nanostructures using an additive direct-write lithography technique.
Hybrid nanostructures hold hydrogen well
Three-dimensional structures that combine boron nitride nanotubes and graphene may be suitable for hydrogen storage for cars, according to calculations by Rice University scientists.
Technology may aid at-home heart attack diagnosis, patient monitoring
Bioengineers at the University of Texas at Dallas have developed a flexible, mechanically stable, disposable sensor for monitoring proteins circulating in the blood that are released from damaged heart muscle cells at the onset of a heart attack.
New reaction for the synthesis of nanostructures
The collaboration between the research groups of professors Pau Ballester and José R.
DNA shaping up to be ideal framework for rationally designed nanostructures
Scientists developed two DNA-based self-assembly approaches for desired nanostructures. The first approach allows the same set of nanoparticles to be connected into a variety of three-dimensional structures; the second facilitates the integration of different nanoparticles and DNA frames into interconnecting modules, expanding the diversity of possible structures.

Related Nanostructures Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".