Data assimilation significantly improves forecasts of aerosol and gaseous pollutants across China

July 20, 2020

Aerosols are important components of the atmosphere and have an adverse impact on atmospheric visibility and human health, which also affect the climate via direct radiative forcing and the interaction with clouds and precipitation. In recent years, regional aerosol pollution incidents have occurred frequently in China, so enhancing early warning capability of air pollution is of great significance and has always been a concern of researchers. As an indispensable tool, air quality numerical models have been widely employed in air quality analysis and prediction and to forecast spatial-temporal evolutions of atmospheric pollutants. Data assimilation (DA) technology can organically combine observation information and model background field to develop a theoretically optimal analysis field, so as to improve the prediction accuracy by optimizing the model initial field. At present, the bulk of assimilation studies of pollutants, however, focused on the separated assimilation of gaseous pollutants or particulate matter PM2.5 and PM10 total mass, few researchers considered the chemical mechanism of aerosol multi-components in multi-particle size sections.

Recently, Master Wang Daichun, Dr. You Wei (corresponding author) and Associate Professor Zang Zengliang from the Institute of Meteorology and Oceanography, National University of Defense Technology, China used the three-dimensional variational assimilation algorithm to establish a chemical DA system, which included aerosol components such as elementary carbon, organic carbon, sulfate, nitrate, chloride, sodium salt, ammonium salt, inorganic and particle PM2.5, PM10 in addition to gaseous pollutants such as SO2, NO2, CO, O3 mass concentrations as control variables. Subsequently, simultaneous assimilation of hourly mass concentration observations of PM2.5, PM10, SO2, NO2, CO, and O3 released by the China National Environmental Monitoring Centre was performed to evaluate this system. The results show that this assimilation system significantly improves analyses and forecasts of both particulate matter and gaseous pollutant mass concentrations. The study was published in Science China Earth Sciences under the title "A three-dimensional variational data assimilation system for a size-resolved aerosol model: Implementation and application for particulate matter and gaseous pollutant forecasts across China".

The study revealed variable benefits from assimilation on different pollutants, as shown in Figure 1. DA significantly improves PM2.5, PM10, and CO forecasts leading to positive effects that last more than 48 h. The positive effects of DA on SO2 and O3 forecasts last up to 8 h but that remains relatively poor for NO 2 forecasts. After analysis, the positive effect of DA on pollutant forecasts has a certain relationship with the life cycle of pollutants. In the case of pollutants with a long lifespan, a longer forecast range due to DA can be expected than for pollutants with short life spans, such as NO2 and O3.

The study also showed that the influence of assimilation varies in different areas, as presented in Figure 2. It is possible that the positive effects of DA on PM2.5 and PM10 forecasts can last more than 48 h across most regions of China. Indeed, DA significantly improves SO2 forecasts within 48 h over north China, and much longer CO assimilation benefits (48 h) are found in most regions apart from north and east China and across the Sichuan Basin. Data show that DA is able to improve O3 forecasts within 48 h across China with the exception of southwest and northwest regions and the O3 DA benefits in southern China are more evident, while from a spatial distribution perspective, NO2 DA benefits remain relatively poor.

The results enrich the study of aerosol and gaseous pollutants. It not only has the reference value for the monitoring, prediction, and control of air pollutants, but also has the important scientific significance to deal with the pollution weather, the management, and prediction of atmospheric environment in China.
This work was supported by the National Key R&D Program of China (Grant No. 2017YFC0209803) and the National Natural Science Foundation of China (Grant Nos. 41775123 & 41805092).

See the article:

Wang D, You W, Zang Z, Pan X, He H, Liang Y. 2020. A three-dimensional variational data assimilation system for a size-resolved aerosol model: Implementation and application for particulate matter and gaseous pollutant forecasts across China. Science China Earth Sciences, 63, 10.1007/s11430-019-9601-4

Science China Press

Related Particulate Matter Articles from Brightsurf:

Seeing dark matter in a new light
A small team of astronomers have found a new way to 'see' the elusive dark matter haloes that surround galaxies, with a new technique 10 times more precise than the previous-best method.

Zooming in on dark matter
Cosmologists have zoomed in on the smallest clumps of dark matter in a virtual universe - which could help us to find the real thing in space.

Particulate plutonium released from the Fukushima Daiichi meltdowns
Small amounts of plutonium (Pu) were released from the damaged Fukushima Daiichi Nuclear Power Plant (FDNPP) reactors into the environment during the site's 2011 nuclear disaster.

How particulate matter arises from pollutant gases
When winter smog takes over Asian mega-cities, more particulate matter is measured in the streets than expected.

Fine particulate matter may increase mortality among young patients with certain cancers
An analysis of nearly 16,000 young patients with cancer in Utah revealed that exposure to fine particulate matter was associated with increased mortality at five and 10 years after diagnosis of certain cancers.

Being fun is no laughing matter
A longitudinal study examined whether children who are well-liked and children who are popular got that way by being fun to hang around with.

Looking for dark matter
Dark matter is thought to exist as 'clumps' of tiny particles that pass through the earth, temporarily perturbing some fundamental constants.

Tracking down the mystery of matter
Researchers at the Paul Scherrer Institute PSI have measured a property of the neutron more precisely than ever before.

Finer particulate matter (PM1) could increase cardiovascular disease risk
In addition to harmful gases such as carbon monoxide, air pollution contains tiny particles that have been linked to health problems, including cardiovascular disease and asthma.

Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.

Read More: Particulate Matter News and Particulate Matter Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to