Short-term dyslexia treatment strengthens key brain regions

July 21, 2003

ST. PAUL, MN - After only three weeks of reading instruction, brain scans in children with dyslexia develop activation patterns that match those of normal readers, according to a new study published in the July 22 issue of Neurology, the scientific journal of the American Academy of Neurology.

These findings indicate that children with dyslexia use the same regions of their brains as other readers, and that specialized instruction can rapidly compensate for some types of reading deficits.

Dyslexic children in this study had above average intelligence but scored approximately 30 percent lower than average on standard reading tests. The dyslexic children and a group of good readers of the same age underwent functional magnetic resonance imaging (fMRI) to map their brain activation patterns during two types of reading tests. The children with dyslexia then received a three-week training program based on principles outlined by the National Reading Panel (http://www.nationalreadingpanel.org), convened by the National Institute of Child Health and Human Development. Both groups of children then underwent a second brain scan. The experiment was conducted during the summer, to avoid confounding effects from school instruction.

The reading tests during the brain scan measured the ability of the children to decide whether certain letter combinations could stand for certain sounds (for example, could "ow" and "oa" make the same sound?) and whether certain letter patterns in words created meaningful relationships between words (for example, does the "er" in "builder" make it related to the word "build"? does the "er" in "corner" make it related to the word "corn"?). Both skills are key elements of the reading process.

Both dyslexic children and normal readers used the same specific parts of their brains to perform these tasks, says lead study author Elizabeth Aylward, PhD, with the department of radiology at the University of Washington in Seattle. However, the activation of these regions was much weaker in dyslexic children, reflecting their poorer performance on these tasks.

After the three-week reading program the levels of brain activation were essentially the same in the two groups. Aylward says these results indicate that instruction doesn't "rewire" the brain of the dyslexic child, but instead strengthens the normal circuits which are already in use.

One of the most encouraging results of the study, she says, is that "we can document changes in the brain even after a fairly short training period," suggesting that appropriate in-school training has great potential for improving the reading ability of dyslexic children.

Reading and spelling disabilities, which occur despite normal intelligence, affect 10 to 15 percent of school-age children in the United States. Early diagnosis and proper instruction significantly improve the dyslexic child's reading achievement outcome.
-end-
More background on dyslexia including initial steps toward identifying it in a child, how it may be treated, and additional resources can be found in Neurology's "Patient Page" at http://www.neurology.org.

The American Academy of Neurology, an association of more than 18,000 neurologists and neuroscience professionals, is dedicated to improving patient care through education and research. A neurologist is a doctor with specialized training in diagnosing, treating and managing disorders of the brain and nervous system such as stroke, Alzheimer's disease, epilepsy, Parkinson's disease, autism and multiple sclerosis. For more information about the American Academy of Neurology, visit its web site at http://www.aan.com.

American Academy of Neurology

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.