Enhanced LEDs promise to transform lighting

July 21, 2004

TROY, N.Y.-- A research team at Rensselaer Polytechnic Institute has created a new type of reflector that has dramatically improved LED (light-emitting diodes) luminance. The National Science Foundation (NSF) recently awarded the research team a three-year, $210,000 grant to move the patented omni-directional reflector to market.

"We have developed an omni-directional reflector (ODR) for LEDs that will accelerate the replacement of conventional lighting used for a multitude of applications, such as lighting in homes, businesses, museums, airports, and on streets," said Fred Schubert, Wellfleet Senior Constellation Professor of the Future Chips Constellation at Rensselaer who is heading the research effort. "The advance has implications ranging from major energy savings to contributing to a better environment and improving health."

New LED Technology

LEDs are made from semiconductor "chips," the size of sand grains, covered with arrays of pencil-eraser size plastic bulbs. Increasingly being used in traffic signals, automotive lighting, and exit signs, LEDs have the potential to use far less electricity and last much longer than conventional fluorescent and incandescent bulbs. But current LEDs are not bright enough to replace most everyday uses of the standard light bulb.

"Only when the light generated is efficiently reflected inside the semiconductor can the brightness exceed that of standard lighting sources," Schubert says. "With the ODR, which reflects light at nearly 100 percent--up to twice as much as previous reflectors--we now have an LED that could revolutionize today's standard lighting."

The ODR is a thin triple-layer coating that consists of a semiconductor, a dielectric material, and a silver layer. Reports of the new reflector were published in the May 31, 2004, issue of the journal of Applied Physics Letters and last October in the IEEE (Institute of Electrical and Electronics Engineers) journal of Electron Devices Letters. In addition to NSF funding, the researchers also have received $250,000 in the last two years from the Defense Advanced Research Projects Agency to develop the new reflector.

Next-Generation LEDs: Cutting Energy Costs and Potential Medical Applications

Next-generation LEDs are expected to become the widespread "green technology" of choice for lighting, Schubert says. "With near ideal LEDs, our nation could cut electricity consumption for lighting in half," Schubert says. "Lighting is the most common use of electrical energy, taking up about 25 percent of electrical energy consumption in the United States."

Schubert also notes that LEDs are mercury-free, unlike even the newest energy-saving fluorescent bulbs. Mercury exposure can cause significant health problems in children and adults, according to National Institutes of Health.

In addition, an LED that emits higher-quality light has potential medical applications, such as alleviating sleep disorders, Schubert says. The circadian cycle, the 24-hour sleep-wake cycle in healthy humans, is controlled by the spectrum and intensity of light sources. Using the right light for the right time of day can enhance or hinder sleep.

For example, "tunable" light sources, such as LEDs, which emit longer wavelength light (red) that mimics the setting Sun could help those with insomnia sleep better. Individuals are not affected visually by the difference in "colored" light, but the body's internal clock can sense the difference, Schubert says. Conventional illumination sources cannot provide the same benefit because of the lack of "tunability," meaning their optical spectrum cannot be adjusted to emphasize various wavelengths.

Schubert, who won the 2000 Discover Magazine Award for his photon-recycling semiconductor LED invention, has helped to transform traffic signals and airport runway lighting through his numerous LED-based inventions. He holds appointments in the Department of Electrical, Computer, and Systems Engineering and in the Department of Physics, Applied Physics, and Astronomy at Rensselaer. The recently-completed Future Chips Constellation, in which he is a senior professor, focuses on innovations in materials and devices, in solid state and smart lighting, and extends to applications such as sensing, communications, and biotechnology.
-end-
About Rensselaer

Rensselaer Polytechnic Institute, founded in 1824, is the nation's oldest technological university. The school offers degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of research centers that are characterized by strong industry partnerships. The Institute is especially well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Rensselaer Polytechnic Institute

Related Semiconductor Articles from Brightsurf:

Blue phosphorus: How a semiconductor becomes a metal
Blue phosphorus, an atomically thin synthetic semiconductor, becomes metallic as soon as it is converted into a double layer.

A new method to measure optical absorption in semiconductor crystals
Tohoku University researchers have revealed more details about omnidirectional photoluminescence (ODPL) spectroscopy - a method for probing semiconducting crystals with light to detect defects and impurities.

Medical robotic hand? Rubbery semiconductor makes it possible
A medical robotic hand could allow doctors to more accurately diagnose and treat people from halfway around the world, but currently available technologies aren't good enough to match the in-person experience.

Laser allows solid-state refrigeration of a semiconductor material
A team from the University of Washington used an infrared laser to cool a solid semiconductor by at least 20 degrees C, or 36 F, below room temperature, as they report in a paper published June 23 in Nature Communications.

Scientists create smallest semiconductor laser
An international team of researchers announced the development of the world's most compact semiconductor laser that works in the visible range at room temperature.

Clemson researcher's novel MOF is potential next-gen semiconductor
Clemson professor Sourav Saha demonstrated a novel double-helical metal organic framework architecture in a partially oxidized form that conducts electricity, potentially making it a next-generation semiconductor.

A gold butterfly can make its own semiconductor skin
A nanoscale gold butterfly provides a more precise route for growing/synthesizing nanosized semiconductors that can be used in nano-lasers and other applications.

Scientists pioneer new generation of semiconductor neutron detector
In a new study, scientists have developed a new type of semiconductor neutron detector that boosts detection rates by reducing the number of steps involved in neutron capture and transduction.

Scientists see defects in potential new semiconductor
A research team has reported seeing, for the first time, atomic scale defects that dictate the properties of a new and powerful semiconductor.

Bending an organic semiconductor can boost electrical flow
Slightly bending semiconductors made of organic materials can roughly double the speed of electricity flowing through them and could benefit next-generation electronics such as sensors and solar cells, according to Rutgers-led research.

Read More: Semiconductor News and Semiconductor Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.