Link between competing phases in cuprates leads to new theory

July 21, 2011

UPTON, NY - A team of scientists studying the parent compound of a cuprate (copper-oxide) superconductor has discovered a link between two different states, or phases, of that matter - and written a mathematical theory to describe the relationship. This work, appearing in the July 22, 2011, issue of Science, will help scientists predict the material's behavior under varying conditions, and may help explain how it's transformed into a superconductor able to carry current with no energy loss.

"The ultimate goal is to use what we learn to design copper-oxide materials with desired properties - such as superconductors that operate at temperatures warm enough to allow more widespread use in applications designed to transform the distribution of electricity," said J.C. Séamus Davis, a co-author on the paper. Davis is Director of the Center for Emergent Superconductivity at the U.S. Department of Energy's Brookhaven National Laboratory and the J.D. White Distinguished Professor of Physical Sciences at Cornell University.

"If you want to understand how to use a material, you need a theoretical understanding of how it behaves under different conditions," Davis said. For example, there would be no desktop computers if we didn't first have a theory to explain the behavior of silicon, the main component of the computer's memory and processing chips. "To attain that kind of control over cuprate superconductors - materials that have enormous potential for improving energy efficiency and storage - we need that quantitative and predictive understanding."

One challenge is that copper-oxide superconductors have lots of other states that can compete with superconductivity. To begin to understand these different phases - which are dominant, which are weaker, how they interact, and what happens to alter the balance of "power" - the experimentalists* on the team used a technique called spectroscopic image-scanning tunneling microscopy, developed by Davis, to directly visualize the electrons in each phase at the atomic level.

"With this technique, we can look for how the competition between two forms of matter works by direct observation," Davis said.

One state has a periodic modulation of the electronic structure, like a wave with periodic peaks and valleys that impart a "stripe" pattern over the entire crystalline structure of the material. The other state has variations within every unit cell of the same crystal - that is, variations in a property of each individual electron.

Davis' technique was able to detect "topological defects" - swirling vortex-like distortions in the stripey component of the electronic structure - that provide a link from one of these ordered phases to the other.

These topological defects are similar to those observed in liquid crystal states, which led theoretical physicists in the group - Eun-Ah Kim of Cornell, Michael Lawler of Binghamton University, Subir Sachdev of Harvard University, and Jan Zaanen of Leiden University - to devise a theory that draws on experience with those materials. This new theory explains the coexistence of the two cuprate states, and predicts their interplay at the atomic scale.

The theory should help predict the behavior of the material at the macroscopic scale - how it behaves in the real world - and how that behavior varies as a function of material-specific conditions, such as crystal symmetry.

"We don't know yet how this will relate to the mechanism of high-temperature superconductivity, Davis said, "but we aspire to answer that question."
-end-
This research was supported by the DOE Office of Science (through the Center for Emergent Superconductivity, an Energy Frontier Research Center), the National Science Foundation, the Japanese Ministry of Science and Education, the Japan Society for the Promotion of Science, and the Netherlands Organization for Scientific Research.

*Additional collaborators: Andrej Mesaros (Leiden University and Cornell); K Fujita (Cornell, Brookhaven, and University of Tokyo); Hiroshi Eisaki (Institute of Advanced Industrial Science and Technology, Japan); S Uchida (University of Tokyo).

Related Links

Scientific paper: "How Topological Defects Couple the Smectic Modulations and Intra-unit-cell Nematicity of the Cuprate Pseudogap States": http://www.bnl.gov/bnlweb/pubaf/pr/files/pdf/07Mesaros.pdf

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more at http://www.bnl.gov/newsroom , or follow Brookhaven Lab on Twitter, http://twitter.com/BrookhavenLab .

DOE/Brookhaven National Laboratory

Related Superconductors Articles from Brightsurf:

Progress in electronic structure and topology in nickelates superconductors
Recently, superconductivity was discovered in the hole-doped nickelates, wh ich provide us a new platform to study the mechanism of high-temperature superconductivity.

UCF researcher zeroes in on critical point for improving superconductors
Developing a practical ''room temperature'' superconductor is a feat science has yet to achieve.

Connecting two classes of unconventional superconductors
The understanding of unconventional superconductivity is one of the most challenging and fascinating tasks of solid-state physics.

Superconductors are super resilient to magnetic fields
A Professor at the University of Tsukuba provides a new theoretical mechanism that explains the ability of superconductive materials to bounce back from being exposed to a magnetic field.

New advance in superconductors with 'twist' in rhombohedral graphite
An international research team led by The University of Manchester has revealed a nanomaterial that mirrors the 'magic angle' effect originally found in a complex man-made structure known as twisted bilayer graphene -- a key area of study in physics in recent years.

A new way towards super-fast motion of vortices in superconductors discovered
An international team of scientists from Austria, Germany and Ukraine has found a new superconducting system in which magnetic flux quanta can move at velocities of 10-15 km/s.

Controlling superconductors with light
IBS scientists has reported a conceptually new method to study the properties of superconductors using optical tools.

Superconductors with 'zeitgeist' -- When materials differentiate between past and future
Physicists at TU Dresden have discovered spontaneous static magnetic fields with broken time-reversal symmetry in a class of iron-based superconductors.

Hydrogen blamed for interfering with nickelate superconductors synthesis
Prof. ZHONG Zhicheng's team at the Ningbo Institute of Materials Technology and Engineering has investigated the electronic structure of the recently discovered nickelate superconductors NdNiO2. They successfully explained the experimental difficulties in synthesizing superconducting nickelates, in cooperation with Prof.

A closer look at superconductors
From sustainable energy to quantum computers: high-temperature superconductors have the potential to revolutionize today's technologies.

Read More: Superconductors News and Superconductors Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.